• Title/Summary/Keyword: SIMD instruction

Search Result 81, Processing Time 0.022 seconds

Design of a Graphic Processor for Multimedia Data Processing (멀티미디어 데이타 처리를 위한 그래픽 프로세서 설계)

  • 고익상;한우종;선우명동
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.10
    • /
    • pp.56-65
    • /
    • 1999
  • This paper presents an architecture and its instruction set for a graphic coprocessor(GCP) which can be used for a multimedia server. The proposed instruction set employs parallel architecture concepts, such as SIMD and Superscalar. GCP consists of a scheduler and four functional units. The scheduler solves an instruction bottleneck problem causing by sharing with four general processors(GPs). GCP can execute up to 4 instructions in parallel. It consists of about 56,000 gates and operates at 30 MHz clock frequency due to speed limitation of SOG technology. GCP meets the real-time DCT algorithm requirement of the CIF image format and can process up to 63 frames/sec for the DCT Algorithm and 21 frames/sec for the Full Block matching Algorithm of the CIF image format.

  • PDF

Design and Implementation of a DSP Chip for Portable Multimedia Applications (휴대 멀티미디어 응용을 위한 DSP 칩 설계 및 구현)

  • 윤성현;선우명훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.31-39
    • /
    • 1998
  • This paper presents the design and implementation of a new multimedia fixed-point DSP (MDSP) core for portable multimedia applications. The MDSP instruction set is designed through the analysis of multimedia algorithms and DSP instruction sets. The MDSP architecture employs parallel processing techniques, such as SIMD and vector processing as well as DSP techniques. The instruction set can handle various data formats and MDSP can perform two MAC operations in parallel. The switching network and packing network can increase the performance by overlapping data rearrangement cycles with computation cycles. We have designed Verilog HDL models and the 0.6 $\mu\textrm{m}$ Samsung KG75000 SOG library is used. The total gate count is 68,831 and the clock frequency is 30 MHz.

  • PDF

Real-time H.264/AVC High 4:4:4 Predictive Decoder Using Multi-Thread and SIMD Instructions (멀티쓰레드와 SIMD 명령어를 이용한 실시간 H.264/AVC High 4:4:4 Predictive 디코더의 구현)

  • Kim, Yong-Hwan;Kim, Je-Woo;Choi, Byeong-Ho;Lee, Seok-Pil;Paik, Joon-Ki
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.350-353
    • /
    • 2007
  • This paper presents an real-time implementation of H.264/AVC High 4:4:4 Predictive profile decoder using general-purpose processors by exploiting multi-threading technique and Single Instruction Multiple Data (SIMD) instructions without any quality degradation. We analyze differences between the existing High profile and High 4:4:4 Predictive profile decoder, and show various optimization techniques to decode high fidelity and high definition (HD) video in real-time. Simulation results show that the proposed decoder can play high fidelity HD video at average 40 frames per seconds (fps) for the IBBrBP bistream and about 50 fps for the Intra-only bitstream.

  • PDF

A Study on High-speed Image Binarization Using SIMD (SIMD를 이용한 영상의 고속 이진화에 관한 연구)

  • Kim, Doo-Sik;Lee, Sang-Ho;Kim, Byeong-Geun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.775-778
    • /
    • 2002
  • 영상 이진화란 명도 영상(gray-scaled image)을 이진 영상(bi-leveled image)으로 변환하는 것을 말한다. 영상 이진화는 문서 인식, 비디오 영상 분석 등과 같이 영상처리 분야에서 많이 사용되는 기본적인 영상 처리 과정에 해당한다. 본 논문은 Intel 사의 Pentium 계열 프로세서에서 지원하는 SIMD(Single-Instruction Multiple-Data) 기술을 이용하여 영상 이진화를 고속으로 수행하는 방법을 소개한다. 우편영상에 대하여 실험한 결과, SSE2 명령어로 구현된 프로그램은 기존의 C 언어로 구현된 프로그램에 비하여 4배 이상의 속도 향상을 보였다.

  • PDF

High Performance Implementation of SGCM on High-End IoT Devices

  • Seo, Hwajeong
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.212-216
    • /
    • 2017
  • In this paper, we introduce novel techniques to improve the high performance of AE functions on modern high-end IoT platforms (ARM-NEON), which support SIMD and cryptography instruction sets. For the Sophie Germain Counter Mode of operation (SGCM), counter modes of encryption and prime field multiplication are required. We chose the Montgomery multiplication for modular multiplication. We perform Montgomery multiplication in a parallel way by exploiting both the ARM and NEON instruction sets. Specifically, the NEON instruction performed 128-bit integer multiplication and the ARM instruction performed Montgomery reduction, simultaneously. This approach hides the latency for ARM in the NEON instruction set. For a high-speed counter mode of encryptions for both AE functions, we introduced two-level computations. When the tasks were large volume, we switched to the NEON instruction to execute the encryption operations. Otherwise, we performed the encryptions on the ARM module.

A Reconfigurable Parallel Processor for Efficient Processing of Mobile Multimedia (모바일 멀티미디어의 효율적 처리를 위한 재구성형 병렬 프로세서의 구조)

  • Yoo, Se-Hoon;Kim, Ki-Chul;Yang, Yil-Suk;Roh, Tae-Moon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.23-32
    • /
    • 2007
  • This paper proposes a reconfigurable parallel processor architecture which can efficiently implement various multimedia applications, such as 3D graphics, H.264/H.263/MPEG-4, JPEG/JPEG2000, and MP3. The proposed architecture directly connects memories and processors so that memory access time and power consumption are reduced. It supports floating-point operations needed in the geometry stage of 3D graphics. It adopts partitioned SIMD to reduce hardware costs. Conditional execution of instructions is used for easy development of parallel algorithms.

Implementation of Multi-Core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals (모바일 초음파 영상신호의 빔포밍 알고리즘을 위한 멀티코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.45-52
    • /
    • 2011
  • In the past, a patient went to the room where an ultrasound image diagnosis device was set, and then he or she was examined by a doctor. However, currently a doctor can go and examine the patient with a handheld ultrasound device who stays in a room. However, it was implemented with only fundamental functions, and can not meet the high performance required by the focusing algorithm of ultrasound beam which determines the quality of ultrasound image. In addition, low energy consumption was satisfied for the mobile ultrasound device. To satisfy these requirements, this paper proposes a high-performance and low-power single instruction, multiple data (SIMD) based multi-core processor that supports a representative beamforming algorithm out of several focusing methods of mobile ultrasound image signals. The proposed SIMD multi-core processor, which consists of 16 processing elements (PEs), satisfies the high-performance required by the beamforming algorithm by exploiting considerable data-level parallelism inherent in the echo image data of ultrasound. Experimental results showed that the proposed multi-core processor outperforms a commercial high-performance processor, TI DSP C6416, in terms of execution time (15.8 times better), energy efficiency (6.9 times better), and area efficiency (10 times better).

Improvement of H.264 Encoder Using MMX (MMX를 이용한 H.264 인코더 성능 개선)

  • Kim, Sang-Ho;Lee, June-Hwan;Rhee, Sang-Burm
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.729-730
    • /
    • 2006
  • multimedia applications has been targeted for exploiting single instruction multiple data extensions to instruction architectures for the most of the modern microprocessor. In this paper, the newest video coding standard, H.264/AVC baseline profile decoder has been implemented and optimized exploiting INTEL MMX technology to show the overall system speedup by the SIMD style coding

  • PDF

Color Media Instructions for Embedded Parallel Processors (임베디드 병렬 프로세서를 위한 칼라미디어 명령어 구현)

  • Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.7
    • /
    • pp.305-317
    • /
    • 2008
  • As a mobile computing environment is rapidly changing, increasing user demand for multimedia-over-wireless capabilities on embedded processors places constraints on performance, power, and sire. In this regard, this paper proposes color media instructions (CMI) for single instruction, multiple data (SIMD) parallel processors to meet the computational requirements and cost goals. While existing multimedia extensions store and process 48-bit pixels in a 32-bit register, CMI, which considers that color components are perceptually less significant, supports parallel operations on two-packed compressed 16-bit YCbCr (6 bit Y and 5 bits Cb, Cr) data in a 32-bit datapath processor. This provides greater concurrency and efficiency for YCbCr data processing. Moreover, the ability to reduce data format size reduces system cost. The reduction in data bandwidth also simplifies system design. Experimental results on a representative SIMD parallel processor architecture show that CMI achieves an average speedup of 6.3x over the baseline SIMD parallel processor performance. This is in contrast to MMX (a representative Intel's multimedia extensions), which achieves an average speedup of only 3.7x over the same baseline SIMD architecture. CMI also outperforms MMX in both area efficiency (a 52% increase versus a 13% increase) and energy efficiency (a 50% increase versus an 11% increase). CMI improves the performance and efficiency with a mere 3% increase in the system area and a 5% increase in the system power, while MMX requires a 14% increase in the system area and a 16% increase in the system power.

Design of a scalable general-purpose parallel associative processor using content-addressable memory (Content-Addressable Memory를 이용한 확장 가능한 범용 병렬 Associative Processor 설계)

  • Park, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.51-59
    • /
    • 2006
  • Von Neumann architecture suffers from the interface between the central processing unit and the memory, which is called 'Von Neumann bottleneck' In this paper, we propose a scalable general-purpose associative processor (AP) based on content-addressable memory (CAM) which solves this problem and is suitable for the search-oriented applications. We propose an efficient instruction set and a structural scalability to extend for larger applications. We define twelve instructions and provide some reduced instructions to speed up which execute two instructions in a single instruction cycle. The proposed AP performs in a bit-serial, word-parallel fashion and can be considered as a 32-bit general-purpose parallel processor with a massively parallel SIMD structure. We design and simulate a maximum/minumum search greater-than/less-than search, and parallel addition to verify the proposed architecture. The algorithms are executed in a constant time O(k) regardless of the number of input data.