• 제목/요약/키워드: SIFT알고리즘

검색결과 125건 처리시간 0.033초

모바일 장치기반의 바이오 객체 이미지 매칭 시스템 설계 및 구현 (The design and implementation of Object-based bioimage matching on a Mobile Device)

  • 박찬일;문승진
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.1-10
    • /
    • 2019
  • 객체기반 이미지 매칭 알고리즘 기술은 이미지 프로세싱 및 컴퓨터 비전 분야에서 광범위하게 사용되어 왔다. 이러한 이미지 매칭 알고리즘 기반의 수 많은 응용 프로그램은 객체인식, 3D 모델링, 비디오 추적 및 바이오 정보학 분야에서 개발되어 왔다. 이미지 매칭 알고리즘의 좋은 예는 Scale invariant Feature Transform(SIFT) 이다. 하지만 SIFT 알고리즘 기술을 이용한 많은 응용 프로그램은 클라이언트-서버 구조가 아닌 하나의 시스템으로 운영되어 왔다. 본 논문은 모바일 플랫폼 기반에서 SIFT 알고리즘 기술을 이용하여 클라이언트-서버 구조로 이미지 매칭 시스템을 구현하였다. 제안된 시스템은 바이오 이미지 객체를 매칭하고 식별하여 사용자에게 유용한 정보를 제공한다. 또한 본 논문의 주요 방법론적 기여는 모바일 장치에 유비쿼터스 인터넷 연결을 활용하여 편리한 사용자 인터페이스와 객체간의 상호작용적인 묘사, 분할, 표현, 매칭 및 바이오 이미지를 검색한다. 본 논문은 이러한 기술과 함께 바이오 정보학에 대한 의미론적 이미지 검색을 수행하며 응용 프로그램에서 객체 이미지의 다른 점을 추출하여 신뢰할 수 있는 이미지 매칭을 수행하는 예를 제시해주었다.

SIFT를 이용한 문서 영상에서의 단어 검색 알고리즘 (Word Spotting Algorithms Using SIFT in Document Images)

  • 이득용;전효종;오일석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.488-490
    • /
    • 2011
  • 본 논문에서는 문서 영상에서 글자 분할 및 인식이 필요 없는 단어 검색 알고리즘을 제안한다. 글자 분할을 하지 않고 검색하기 위해 영상 검색에 사용되는 SIFT특징을 이용하였다. 제안하는 알고리즘은 사용자가 입력한 질의어를 질의 영상으로 변환하고, 질의 영상에서 SIFT특징을 추출한다. 추출된 특징은 문서영상에서 추출한 특징과 매칭을 통해 매칭점 쌍을 생성한다. 생성된 매칭점 쌍들을 군집화 조건에 따라 군집화 한다. 군집화는 질의 영상과 지리적 분포가 유사하게 군집화 되도록 설계되었다. 생성된 군집은 군집에 포함된 특징점의 개수가 많을수록 질의 영상과 유사하다. 따라서 N개 이상의 원소를 가지는 군집을 결과로 출력한다. 실험한 결과 제안하는 알고리즘의 가능성을 확인할 수 있었다.

MMAD와 SIFT를 이용한 디스패리티 맵 생성 (Estimation of Disparity Map using MMAD and SIFT)

  • 신도경;문영식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.510-515
    • /
    • 2007
  • 2차원 영상으로부터 3차원 정보를 획득하기 위해서는 disparity map의 정확한 계산이 요구된다. Disparity map을 구하기 위한 기존의 알고리즘은 크게 상관도 기반 방법과 특징 기반 방법으로 분류되는데, 본 논문에서는 이들 각 방법에 대한 분석을 통해서 좀 더 정확한 disparity map을 구하는 방법을 모색한다. 이를 위해 스테레오 카메라로부터 획득된 2차원 영상에서 건물에 대한 깊이 정보 추출을 위해 SIFT 기법을 이용한 disparity map 생성 알고리즘을 제안한다. 제안된 기법은 수정된 MAD인 MMAD(Modified Mean of Absolute Differences) 알고리즘을 새로 제안하여 영역 기반의 유사도 측정을 기반으로 하면서 특징 기반 방법의 하나인 SIFT를 적용하여 거짓 정합(false matching)에 의한 에러를 줄이고 폐색(occlusion) 영역에 대한 오류를 보정한 disparity map을 생성하는데 초점을 둔다.

  • PDF

SIFT와 SURF의 성능 비교 (A Comparison of performance between SIFT and SURF)

  • 이용환;박성현;신인경;안효창;조한진;이준환;이상범
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1560-1562
    • /
    • 2013
  • 정확하고 강인한 영상 등록(Registration)은 영상 검색과 컴퓨터 비전과 같은 여러 응용 분야에서 성능을 좌우하는 매우 중요한 역할을 담당하며, 특징 추출 및 매칭 단계를 통해 수행된다. 영상의 특징을 관심 점으로 지정하여 추출하는 대표적인 알고리즘으로, SIFT (Scale Invariant Feature Transform)와 SURF (Speeded Up Robust Feature)가 있다. 본 논문에서는 2 개의 특징점 추출 알고리즘을 구현하고 예제 데이터를 기반으로 실험을 통해 성능적 비교 분석을 수행한다. 실험 결과, SURF 알고리즘이 특징 추출 및 매칭, 처리시간 측면에서 SIFT 보다 효율적인 성능을 보였다.

터널 스캐닝 다중 촬영 영상의 특징점 기반 접합 알고리즘 성능평가 (Performance of Feature-based Stitching Algorithms for Multiple Images Captured by Tunnel Scanning System)

  • 이태희;박진태;이승훈;박신전
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.30-42
    • /
    • 2022
  • 최근, 국내의 도심지와 수도권을 잇는 급행철도 사업, 간선도로 및 고속도로의 지중화 사업 등과 같이 교통 인프라 건설이 활발하게 추진되고 있으며 국토의 효율적인 활용을 위하여 지하 터널 및 산 터널의 시공이 활발해지고 있다. 터널 시공이 늘어남에 따라 콘크리트 구조물의 노후화로 인한 안전진단, 유지보수 및 관리의 필요성도 증대되고 있다. 본 논문에서는 인력에 의한 외관조사의 단점을 해결하고 터널 안전점검의 자동화를 위하여 터널 스캐닝영상을 통한 안전점검을 제시한다. 터널 스캐닝영상을 통한 안전점검은 기존 인력에 의한 외관조사에 비해 조사기간과 인력을 크게 줄일 수 있으며 조사자의 안전사고와 교통체증에 따른 사회적 비용을 절감할 수 있다는 장점이 있다. 터널 스캐닝영상 기반 안전점검을 위해서는 터널 스캐닝영상의 접합을 통하여 평면전개 이미지를 생성하는 것이 핵심이다. 본 연구에서는 터널 스캐닝영상 기반 안전점검의 필수기술인 터널 스캐닝 다중 촬영 영상 접합에 적합한 알고리즘에 대한 성능평가를 진행하였다. 터널이미지 접합에 유리한 알고리즘을 찾기 위하여 OpenCV에서 제공하는 특징점 검출 및 매칭 알고리즘 중 실수기술자와 높은 정확도를 갖는 SIFT, 이진기술자를 갖고 연산속도가 빠른 ORB, BRISK 총 3가지 알고리즘을 비교 분석하고자 한다. 터널이미지는 크게 콘크리트부, 조명부와 타일부로 나누어 터널이미지의 특성을 반영하였다. 터널이미지 접합에 유리한 알고리즘은 특징점 검출 개수, 연산속도, 특징점 매칭의 정확성, 영상접합 결과를 종합하여 판별하였다. 접합성능은 SIFT알고리즘이 가장 좋았으며 ORB, BRISK도 짧은 연산시간과 준수한 성능을 보였다. 연산시간보다 정확도가 중요시되는 정밀한 평면전개 이미지 생성에 SIFT가 활용될 수 있고 ORB와 BRISK도 준수한 접합결과를 보여줘 대용량 영상에서 빠른 영상처리 속도가 요구되는 작업이 필요할 경우 사용될 수 있는 가능성을 확인했다.

컬러 불변 특징을 갖는 확장된 SURF 알고리즘 (Extended SURF Algorithm with Color Invariant Feature)

  • 윤현섭;한영준;한헌수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.193-196
    • /
    • 2009
  • 여러 개의 영상으로부터 스케일, 조명, 시점 등의 환경변화를 고려하여 대응점을 찾는 일은 쉽지 않다. SURF는 이러한 환경변화에 불변하는 특징점을 찾는 알고리즘중 하나로서 일반적으로 성능이 우수하다고 알려진 SIFT와 견줄만한 성능을 보이면서 속도를 크게 향상시킨 알고리즘이다. 하지만 SURF는 그레이공간 상의 정보만 이용함에 따라 컬러공간상에 주어진 많은 유용한 특징들을 활용하지 못한다. 본 논문에서는 강인한 컬러특정정보를 포함하는 확장된 SURF알고리즘을 제안한다. 제안하는 방법의 우수성은 다양한 조명환경과 시점변화에 따른 영상을 SIFT와 SURF 그리고 제안하는 컬러정보를 적용한 SURF알고리즘과 비교 실험을 통해 입증하였다.

  • PDF

단일카메라를 사용한 특징점 기반 물체 3차원 윤곽선 구성 (Constructing 3D Outlines of Objects based on Feature Points using Monocular Camera)

  • 박상현;이정욱;백두권
    • 정보처리학회논문지B
    • /
    • 제17B권6호
    • /
    • pp.429-436
    • /
    • 2010
  • 본 논문에서는 단일 카메라로부터 획득한 영상으로부터 물체의 3차원 윤곽선을 구성하는 방법을 제안한다. MOPS(Multi-Scale Oriented Patches) 알고리즘을 이용하여 물체의 대략적인 윤곽선을 검출하고 윤곽선 위에 분포한 특징점의 공간좌표를 획득한다. 동시에 SIFT(Scale Invariant Feature Transform) 알고리즘을 통하여 물체의 윤곽선 내부에 존재하는 특징점 공간좌표를 획득한다. 이러한 정보를 병합하여 물체의 전체 3차원 윤곽선 정보를 구성한다. 본 논문에서 제안하는 방법은 대략적인 물체의 윤곽선만 구성하기 때문에 빠른 계산이 가능하며 SIFT 특징점을 통해 윤곽선 내부 정보를 보완하기 때문에 물체의 자세한 3차원 정보를 얻을 수 있는 장점이 있다.

특징점 Appearance Model을 이용한 3차원 물체 인식 (3D Object Recognition Using Appearance Model of Feature Point)

  • 주성문;박재완;이칠우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1536-1539
    • /
    • 2013
  • 3차원 물체는 카메라의 시선 방향에 따라 다른 영상을 생성하므로 2차원 영상만으로 3차원 물체를 인식하는 것은 쉬운 일이 아니다. 특히 영상생성 시 강한 perspective transformation 이 발생할 경우 2차원 국소 특징을 이용하는 SIFT(Scale-Invariant Feature Transform) 알고리즘은 매칭에 활용하기 어렵다. 본 논문에서는 3차원 물체를 하나의 특정 축 중심으로 회전시키면서 얻은 복수의 영상을 학습 데이터로 활용하여 SIFT 알고리즘을 개선한 물체인식 방법을 제안한다. 이 방법은 복수 영상의 특징점들을 하나의 특징 공간으로 합성하고 그 특징점들 간의 기하학적인 제약조건을 확인하여 3차원 물체를 인식하는 방법이다. 실험에서는 알고리즘의 유용성을 먼저 확인하기 위해 조명조건과 카메라의 위치를 일정하게 유지하였다. 이 방법에 의해 SIFT 알고리즘만으로 인식이 힘들었던 3차원 물체의 다양한 외관(appearance) 인식이 가능하게 되었다.

SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석 (Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design)

  • 박찬일;이수현;정용진
    • 대한전자공학회논문지SD
    • /
    • 제45권6호
    • /
    • pp.49-59
    • /
    • 2008
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 알고리즘을 임베디드 환경에서 실시간으로 처리하기 위해 가장 연산량이 많은 특징점 위치 결정 단계를 고정 소수점 모델로 설계 및 분석하고 그에 근거한 하드웨어 구조를 제안한다. SIFT 알고리즘은 객체의 꼭지점이나 모서리와 같이 색상 성분의 차가 심한 구역에서 얻어진 특징점 주위 픽셀의 벡터성분을 추출하는 알고리즘으로, 현재 얼굴인식, 3차원 객체 인식, 파노라마, 3차원 영상 복원 작업의 핵심 알고리즘으로 연구 되고 있다. 본 알고리즘에 대한 최적의 하드웨어 구현을 위해 특징점 위치(Keypoint Localization)와 방향(Orient Assignment)에 대한 정확도, 오차율을 사용하여 고정 소수점 모델에서 각 중요 변수들의 비트 크기를 결정 한다. 얻어진 고정 소수점 모델은 원래의 부동 소수점 모델과 비교했을 때 정확도 93.57%, 오차율 2.72%의 결과를 보이며, 고정 소수점 모델은 부동 소수점 모델과 비교하여 제거된 특징점의 대부분이 두 영상에서 추출된 특징점 끼리의 매칭과정에서 불필요한 객체의 모서리 영역에 몰려있음을 확인했다. 고정 소수점 모델링 결과 ARM 400MHz 환경에서 약 3시간, Pentium Core2Duo 2.13GHz 환경에서 약 15초의 연산시간을 갖는 부동 소수점 모델이 동일한 환경에서 약 1시간과 10초의 연산시간을 가지며, 최적화된 고정 소수점 모델을 하드웨어로 구현 시 $10{\sim}15\;frame/sec$의 성능을 보일 것으로 예상한다.

특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘 (A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching)

  • 이경민;인치호
    • 한국ITS학회 논문지
    • /
    • 제17권1호
    • /
    • pp.123-128
    • /
    • 2018
  • 본 논문에서는 효율적인 차량 객체를 추적하는 특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘을 제안한다. 제안하는 알고리즘은 효율적인 차량 객체 추적을 위해 FAST 알고리즘을 이용해서 차량의 특징점을 추출한다. 그리고 5X5 영역으로 분할 된 영상에서 특징점이 포함되면 True 포함되지 않으면 False로 해당 영역을 검은색으로 후처리하여 차량 객체을 제외한 불필요한 객체 정보를 제거한다. 그리고 후처리 된 영역을 차량의 최대 탐색창 크기로 설정하고, 차량의 최외각 특징점을 이용한 최소 탐색창을 설정하여 Mean-Shift 알고리즘의 탐색창 크기에 대한 단점을 보완하여 차량 객체 추적을 한다. 제안한 방법의 성능 평가하기위해 SIFT, SURF 알고리즘을 비교하여 실험한다. 그 결과 SIFT 알고리즘에 비해서 약 4배 빠르고 SUFR 알고리즘의 처리 과정 보다는 효율적으로 검출하는 장점이 있다.