• Title/Summary/Keyword: SIFT(Scale Invariant Feature Transform)

Search Result 144, Processing Time 0.024 seconds

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

Methods for Extracting Feature Points from Ultrasound Images (초음파 영상에서의 특징점 추출 방법)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.59-60
    • /
    • 2020
  • 본 논문에서는 특징점 추출 알고리즘 중 SIFT(Scale Invariant Feature Transform)알고리즘을 사용하여 유의미한 특징점을 추출하기 위한 방법을 제안하고자한다. 추출된 특징점을 실제 이미지에 display 해봄으로써 성능을 확인해본다.

  • PDF

Image Watermarking Scheme Based on Scale-Invariant Feature Transform

  • Lyu, Wan-Li;Chang, Chin-Chen;Nguyen, Thai-Son;Lin, Chia-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3591-3606
    • /
    • 2014
  • In this paper, a robust watermarking scheme is proposed that uses the scale-invariant feature transform (SIFT) algorithm in the discrete wavelet transform (DWT) domain. First, the SIFT feature areas are extracted from the original image. Then, one level DWT is applied on the selected SIFT feature areas. The watermark is embedded by modifying the fractional portion of the horizontal or vertical, high-frequency DWT coefficients. In the watermark extracting phase, the embedded watermark can be directly extracted from the watermarked image without requiring the original cover image. The experimental results showed that the proposed scheme obtains the robustness to both signal processing and geometric attacks. Also, the proposed scheme is superior to some previous schemes in terms of watermark robustness and the visual quality of the watermarked image.

Constructing 3D Outlines of Objects based on Feature Points using Monocular Camera (단일카메라를 사용한 특징점 기반 물체 3차원 윤곽선 구성)

  • Park, Sang-Heon;Lee, Jeong-Oog;Baik, Doo-Kwon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.429-436
    • /
    • 2010
  • This paper presents a method to extract 3D outlines of objects in an image obtained from a monocular vision. After detecting the general outlines of the object by MOPS(Multi-Scale Oriented Patches) -algorithm and we obtain their spatial coordinates. Simultaneously, it obtains the space-coordinates with feature points to be immanent within the outlines of objects through SIFT(Scale Invariant Feature Transform)-algorithm. It grasps a form of objects to join the space-coordinates of outlines and SIFT feature points. The method which is proposed in this paper, it forms general outlines of objects, so that it enables a rapid calculation, and also it has the advantage capable of collecting a detailed data because it supplies the internal-data of outlines through SIFT feature points.

Viewpoint Unconstrained Face Recognition Based on Affine Local Descriptors and Probabilistic Similarity

  • Gao, Yongbin;Lee, Hyo Jong
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.643-654
    • /
    • 2015
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine SIFT is an extension of SIFT algorithm to detect affine invariant local descriptors. Affine SIFT generates a series of different viewpoints using affine transformation. In this way, it allows for a viewpoint difference between the gallery face and probe face. However, the human face is not planar as it contains significant 3D depth. Affine SIFT does not work well for significant change in pose. To complement this, we combined it with probabilistic similarity, which gets the log likelihood between the probe and gallery face based on sum of squared difference (SSD) distribution in an offline learning process. Our experiment results show that our framework achieves impressive better recognition accuracy than other algorithms compared on the FERET database.

Fast Image Stitching For Video Stabilization Using Sift Feature Points

  • Hossain, Mostafiz Mehebuba;Lee, Hyuk-Jae;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.957-966
    • /
    • 2014
  • Video Stabilization For Vehicular Applications Is An Important Method Of Removing Unwanted Shaky Motions From Unstable Videos. In This Paper, An Improved Video Stabilization Method With Image Stitching Has Been Proposed. Scale Invariant Feature Transform (Sift) Matching Is Used To Calculate The New Position Of The Points In Next Frame. Image Stitching Is Done In Every Frame To Get Stabilized Frames To Provide Stable Video As Well As A Better Understanding Of The Previous Frame'S Position And Show The Surrounding Objects Together. The Computational Complexity Of Sift (Scale-Invariant Feature Transform) Is Reduced By Reducing The Sift Descriptors Size And Resticting The Number Of Keypints To Be Extracted. Also, A Modified Matching Procedure Is Proposed To Improve The Accuracy Of The Stabilization.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points (지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Choi, Jae-Wan;Han, Dong-Yeob;Kim, -Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • In this paper, we propose the automatic image-to-image registration of high resolution satellite images using local properties of tie points to improve the registration accuracy. A spatial distance between interest points of reference and sensed images extracted by Scale Invariant Feature Transform(SIFT) is additionally used to extract tie points. Coefficients of affine transform between images are extracted by invariant descriptor based matching, and interest points of sensed image are transformed to the reference coordinate system using these coefficients. The spatial distance between interest points of sensed image which have been transformed to the reference coordinates and interest points of reference image is calculated for secondary matching. The piecewise linear function is applied to the matched tie points for automatic registration of high resolution images. The proposed method can extract spatially well-distributed tie points compared with SIFT based method.

Affine Invariant Local Descriptors for Face Recognition (얼굴인식을 위한 어파인 불변 지역 서술자)

  • Gao, Yongbin;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.375-380
    • /
    • 2014
  • Under controlled environment, such as fixed viewpoints or consistent illumination, the performance of face recognition is usually high enough to be acceptable nowadays. Face recognition is, however, a still challenging task in real world. SIFT(Scale Invariant Feature Transformation) algorithm is scale and rotation invariant, which is powerful only in the case of small viewpoint changes. However, it often fails when viewpoint of faces changes in wide range. In this paper, we use Affine SIFT (Scale Invariant Feature Transformation; ASIFT) to detect affine invariant local descriptors for face recognition under wide viewpoint changes. The ASIFT is an extension of SIFT algorithm to solve this weakness. In our scheme, ASIFT is applied only to gallery face, while SIFT algorithm is applied to probe face. ASIFT generates a series of different viewpoints using affine transformation. Therefore, the ASIFT allows viewpoint differences between gallery face and probe face. Experiment results showed our framework achieved higher recognition accuracy than the original SIFT algorithm on FERET database.

Object Recogniton for Markerless Augmented Reality Embodiment (마커 없는 증강 현실 구현을 위한 물체인식)

  • Paul, Anjan Kumar;Lee, Hyung-Jin;Kim, Young-Bum;Islam, Mohammad Khairul;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.126-133
    • /
    • 2009
  • In this paper, we propose an object recognition technique for implementing marker less augmented reality. Scale Invariant Feature Transform (SIFT) is used for finding the local features from object images. These features are invariant to scale, rotation, translation, and partially invariant to illumination changes. Extracted Features are distinct and have matched with different image features in the scene. If the trained image is properly matched, then it is expected to find object in scene. In this paper, an object is found from a scene by matching the template images that can be generated from the first frame of the scene. Experimental results of object recognition for 4 kinds of objects showed that the proposed technique has a good performance.

  • PDF