• Title/Summary/Keyword: SIFS

Search Result 39, Processing Time 0.029 seconds

Mode III SIFs for interface cracks in an FGM coating-substrate system

  • Monfared, Mojtaba Mahmoudi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.71-79
    • /
    • 2017
  • In this study, interaction of several interface cracks located between a functionally graded material (FGM) layer and an elastic layer under anti-plane deformation based on the distributed dislocation technique (DDT) is analyzed. The variation of the shear modulus of the functionally graded coating is modeled by an exponential and linear function along the thickness of the layer. The complex Fourier transform is applied to governing equation to derive a system of singular integral equations with Cauchy type kernel. These equations are solved by a numerical method to obtain the stress intensity factors (SIFs) at the crack tips. The effects of non-homogeneity parameters for exponentially and linearly form of shear modulus, the thickness of the layers and the length of crack on the SIFs for several interface cracks are investigated. The results reveal that the magnitude of SIFs decrease with increasing of FG parameter and thickness of FGM layer. The values of SIFs for FGM layer with exponential form is less than the linear form.

A Study on the Measurement of Stress Intensity Factors for the Fatigue Crack Propagation (피로 균열 진전에 따른 응력확대계수 측정에 관한 연구)

  • Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.80-85
    • /
    • 2012
  • Fatigue cracks in structural components are the most common cause of structural failure when exposed to fatigue loading. In this respect, fatigue crack detection and structural health assessment are very important. Currently, various smart materials are used for detecting fatigue crack and measurement of SIFs(Stress Intensity Factors). So, this paper presented a measurement of SIFs using MFC(Micro Fiber Composite) sensor which is the one of the smart material. MFC sensor is more flexible, durable and reliable than other smart materials. The SIFs of Mode I(K I) as well as Mode II(K II) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results.

A Study on the Improvement of Reliability of Safety Instrumented Function of Hydrodesulfurization Reactor Heater (수소화 탈황 반응기 히터의 안전계장기능 신뢰도 향상에 관한 연구)

  • Kwak, Heung Sik;Park, Dal Jae
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.7-15
    • /
    • 2017
  • International standards such as IEC-61508 and IEC-61511 require Safety Integrity Levels (SILs) for Safety Instrumented Functions (SIFs) in process industries. SIL verification is one of the methods for process safety description. Results of the SIL verification in some cases indicated that several Safety Instrumented Functions (SIFs) do not satisfy the required SIL. This results in some problems in terms of cost and risks to the industries. This study has been performed to improve the reliability of a safety instrumented function (SIF) installed in hydrodesulfurization reactor heater using Partial Stroke Testing (PST). Emergency shutdown system was chosen as an SIF in this study. SIL verification has been performed for cases chosen through the layer of protection analysis method. The probability of failure on demands (PFDs) for SIFs in fault tree analysis was $4.82{\times}10^{-3}$. As a result, the SIFs were unsuitable for the needed RRF, although they were capable of satisfying their target SIL 2. So, different PST intervals from 1 to 4 years were applied to the SIFs. It was found that the PFD of SIFs was $2.13{\times}10^{-3}$ and the RRF was 469 at the PST interval of one year, and this satisfies the RRF requirements in this case. It was also found that shorter interval of PST caused higher reliability of the SIF.

Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Jong-Sung;Kim, Maan-Won
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1412-1422
    • /
    • 2016
  • Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

Method using XFEM and SVR to predict the fatigue life of plate-like structures

  • Jiang, Zhansi;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.455-462
    • /
    • 2020
  • The hybrid method using the extended finite element method (XFEM) and the forward Euler approach is widely employed to predict the fatigue life of plate structures. Due to the accuracy of the forward Euler approach is determined by a small step size, the performance of fatigue life prediction of the hybrid method is not agreeable. Instead the forward Euler approach, a prediction method using midpoint method and support vector regression (SVR) is presented to evaluate the stress intensity factors (SIFs) and the fatigue life. Firstly, the XFEM is employed to calculate the SIFs with given crack sizes. Then use the history of SIFs as a function of either number of fatigue life cycles or crack sizes within the current cycle to build a prediction model. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Three numerical cases composed by a homogeneous plate with edge crack, a composite plate with edge crack and center crack are introduced to verify the performance of the proposed method. The results show that the proposed method enables large step sizes without sacrificing accuracy. The method is expected to predict the fatigue life of complex structures.

Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders

  • Farahpour, Peyman;Babaghasabha, Vahid;Khadem, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1087-1097
    • /
    • 2015
  • In this paper, the effect of functionally graded material (FGM) coatings on the fracture behavior of semi-elliptical cracks in cylinders is assessed. The objective is to calculate the stress intensity factor (SIF) of a longitudinal semi-elliptical crack on the wall of an aluminum cylinder with FGM coating. A three-dimensional finite element method (FEM) is used for constructing the mechanical models and analyzing the SIFs of cracks. The effect of many geometrical parameters such as relative depth, crack aspect ratio, FG coating thickness to liner thickness as well as the mechanical properties of the FG coating on the SIF of the cracks is discussed. For a special case, the validity of the FE model is examined. The results indicated that there is a particular crack aspect ratio in which the maximum value of SIFs changes from the deepest point to the surface point of the crack. Moreover, it was found that the SIFs decrease by increasing the thickness ratio of the cylinder. But, the cylinder length has no effect on the crack SIFs.

Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks (두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1521-1528
    • /
    • 2012
  • The present paper provides the elastic stress intensity factors (SIFs) and the crack opening displacements (CODs) of a thick-walled pipe with a slanted axial through-wall crack. For estimating these elastic fracture mechanics parameters, systematic three-dimensional elastic finite element (FE) analyses were performed by considering geometric variables, i.e., thickness of pipe, reference crack length, and crack length ratio, affecting the SIFs and CODs. As for loading condition, the internal pressure was considered. Based on the FE results, the SIFs and CODs of slanted axial through-wall cracks in a thickwalled pipe along the crack front and the wall thickness were calculated. In particular, to calculate the SIFs of a thick-walled pipe with a slanted axial through-wall crack from those of a thick-walled pipe with an idealized axial through-wall crack, a slant correction factor representing the effect of the slant crack on the SIFs was proposed.

Stress Intensity Factors for an Interlaminar Crack in Composites under Arbitrary Crack Surface Loadings (임의의 균열표면 하중을 받는 복합채 중앙균열의 응력세기계수)

  • Lee, Gang-Yong;Park, Mun-Bok;Kim, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.901-909
    • /
    • 1996
  • A model is constructed to evaluate the stress intensity factors(SIFs) for composites with an interlaminar crack subjected to as arbitrary crack surface loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is solved numerically and the mode I and II SIFs are evaluated for various shear modulus ratios between each layer, crack length to layer thickness, each term of crack surface polynomial loading and the number of layers. The mode I and II SIFs for the E- glass/epoxy composites as well as the hybrid composites are also evaluated.

Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM

  • Haeri, Hadi
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.881-896
    • /
    • 2015
  • A simultaneous analytical, experimental and numerical analysis of crack initiation, propagation and breaking process of the Central Straight through Crack Brazilian Disk (CSCBD) specimens under diametrical compression is carried out. Brazilian disc tests are being accomplished to evaluate the fracturing process based on stress intensity factors (SIFs). The effects of crack inclination angle and crack length on the fracturing processes have been investigated. The same experimental specimens have been numerically modeled by a higher order indirect boundary element method (HDDM). These numerical results are compared with the existing experimental results proving the accuracy and validity of the proposed numerical method.

Evaluation of Crack Growth Estimation Parameters of Thick-Walled Cylinder with Non-Idealized Circumferential Through-Wall Cracks (비 이상화된 원주방향 관통균열이 존재하는 두꺼운 배관의 균열 성장 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su;Park, Chi-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • The present paper provides the elastic stress intensity factors(SIFs) of thick-walled cylinder with non-idealized circumferential through-wall cracks. For estimating these elastic SIFs, the systematic three-dimensional(3D) elastic finite element(FE) analyses were performed. In order to consider practical shape of thick-walled cylinder and non-idealized circumferential through-wall crack, the values of thickness of cylinder, reference crack length and crack length ratio were systematically varied. As for loading conditions, axial tension, global bending and internal pressure were considered. In particular, in order to calculate the SIFs of thick-walled cylinder with non-idealized circumferential through-wall crack from those of thick-walled cylinder with idealized circumferential through-wall crack, the correction factor representing the effect of non-idealized crack on the SIFs were proposed in this paper. The present results can be applied to accurately evaluate the rupture probabilities of nuclear piping considering actual crack growth behaviors.