• Title/Summary/Keyword: SI technique

Search Result 1,431, Processing Time 0.039 seconds

Fabrication and characterization of polycrystalline 3C-SiC mocro-resonators (다결정 3C-SiC 마이크로 공진기 제작과 그 특성)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.250-250
    • /
    • 2008
  • This paper describes the resonant characteristics of polycrystalline SiC micro resonators. The $1{\mu}m$ thick polycrystalline 3C-SiC cantilevers with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at room temperature. For the 100 ~ $40{\mu}m$ long cantilevers, the fundamental frequency appeared at 147.2 kHz - 856.3 kHz. The $100{\mu}m$ and $80{\mu}m$ long cantilevers have second mode resonant frequency at 857.5 kHz and 1.14 MHz. Therefore, polycrystalline 3C-SiC micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

  • PDF

A Study on Chemical Vapor Deposited SiO2 Films on Si Water (Silicon Waferdnl에 화학증착된 Silicon Dioxide 박막에 관한 연구)

  • 김기열;최돈복;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.219-225
    • /
    • 1990
  • Silicon dioxide thin film has been grown by a chemical vapor deposition (CVD) technique using SiH4, and O2 gaseous mixture on a silicon substrate. The experimental results indicated that the deposition rate as a function of the input ratio (O2/SiH4) shows two regions, increasing region and decreasing region. Also the deposition rate increases with increasing the deposition temperature. The microstructure of deposited silicon dioxide films is amorphous. The experimental results of infrared absorption spectrums indicate that Si-H and Si-OH bond increase with decreasing input ratio, but Si-O bond is independent on the input ratio. The interfacial charge of deposited silicon dioxide decreases with increasing input ratio.

  • PDF

Characteristics of polycrystalline 3C-SiC micro resonator (다결정 3C-SiC 마이크로 공진기의 특성)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.69-70
    • /
    • 2008
  • Micro resonators have been actively investigated for bio/chemical sensors and RF M/NEMS devices. Among various materials, SiC is a very promising material for micro/nano resonators since the ratio of its Young's modulus, E, to mass density, $\rho$, is significantly higher than other semiconductor materials, such as, Si and GaAs. Polycrystalline 3C-SiC cantilever with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and its fundamental resonance was measured by a laser vibrometer in air and vacuum at room temperature, respectively. For the cantilever with $100{\mu}m$ length, $10{\mu}m$width and $1.3{\mu}m$ thickness, the fundamental frequency appeared at 147.2 kHz.

  • PDF

Selective Chemical Vapor Deposition of $\beta$-SiC on Si Substrate Using Hexamethyldisilane/HCl/$H_2$ Gas System

  • Yang, Won-Jae;Kim, Seong-Jin;Chung, Yong-Sun;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.91-95
    • /
    • 1998
  • Selectivity of SiC deposition on a Si substrate partially covered with a masking material was investigated by introducing HCl gas into hexamethyldisilane/H2 gas system during the deposition. the schedule of the precursor and HCl gas flows was modified so that the selectivity of SiC deposition between a Si substrate and a mask material should be improved. It was confirmed that the selectivity of SiC deposition was improved by introducing HCl gas. Also, the pulse gas flow technique was effective to enhance the selectivity.

  • PDF

The Stability of Hydrogenated Amorphous Silicon by Hydrogen Radical Annealing (수소기처리에 의한 수소화된 비정질규소의 안정성에 관한 연구)

  • 이재희;이원식
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.73-76
    • /
    • 1996
  • We have prepared hydrogenated amophous silicon (a-si : H) films with superlattice structure by hydrogen radical anneling(HRA) technique. We have studied the preparation of a-Si :H films by HRA and the optical & electronic characteristics. Optical band gap and the hydrogen contents in the a Si : H film is decreased as HRA time increased. We first report a -Si : H film prepared by periodicdeposition of a-Si : H layer and HRA have the superlattice structure using TEM . After 1 hour light soaking on the a-Si :H film prepared by HRA, there are no difference in the temperatre dependence of dark conductivity and the conductivity activation energy. An excellent stability for light in a-Si :H films by HRA can be explained using the long-range structural relaxation of the amorphous network and the propertiesof light -induced defects(LID) proposed by Fritzsche.

  • PDF

Fabrication and characteristics of polycrystalline SiC micro resonators (다결정 SiC 마이크로 공진기의 제작과 그 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.425-428
    • /
    • 2008
  • This paper describes the resonant characteristics of polycrystalline SiC micro resonators. The $1{\mu}m$ thick polycrystalline 3C-SiC cantilevers with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at room temperature. For the $100{\sim}40{\mu}m$ long cantilevers, the fundamental frequency appeared at $147.2kHz{\sim}856.3kHz$. The $100{\mu}m$ and $80{\mu}m$ long cantilevers have second mode resonant frequency at 857.5.kHz and 1.14.MHz, respectively. Therefore, polycrystalline 3C-SiC resonators are suitable for RF MEMS devices and bio/chemical sensor applications.