• Title/Summary/Keyword: SI combustion

Search Result 399, Processing Time 0.027 seconds

Study on Synthesis and Characterization of (Ti.Si)C Composite by SHS Microwave (SHS 마이크로파에 의한 (Ti.Si)C 복합체의 합성 및 소결특성에 관한 연구)

  • 이형복;권상호;이재원;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1009-1018
    • /
    • 1995
  • (Ti.Si)C composite powders were synthesized by SHS method using microwave energy. Compositional and structural characterization of the powder were carried out by using scanning electron microscopy and X-ray diffraction. The average particle size of the synthesized (Ti.Si)C composite powders was smaller than that of the starting materials. From the results of the temperature profile, combustion temperature and velocity were decreased with increasing Si molar ratio. With increasing C molar ratio combustion temperature and velocity did not change. (Ti.Si)C composite was sintered at 185$0^{\circ}C$ for 60 min by using hot-pressing with 30 MPa. The best properties were obtained from the sintered specimen whose composition was 1 : 1 : 1.9 molar ratio of Ti : Si : C. The sintering density, flexural strength and vickers hardness of the sintered body were 4.71 g/㎤, 423 MPa and 21 GPa, respectively.

  • PDF

STUDY ON COMBUSTION CHARACTERISTICS AND APPLICATION OF RADIAL INDUCED IGNITION METHOD IN AN ACTUAL ENGINE

  • PARK J. S.;KANG B. M.;KIM K. J.;LEE T. W.;YEOM J. K.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.555-561
    • /
    • 2005
  • This experimental study was executed to obtain basic data for actual engine operation using radical induced ignition method (RI) which can achieve emission reduction and high efficiency due to the rapid bulk combustion. In this study, a direct injection diesel engine was converted into SI type engine with a sparkplug. The modified SI type engine can be divided into two classes. One is the SI engine with a sparkplug only at the cylinder head, and the other is the SI engine with the sparkplug which is enveloped in a sub-chamber. Also, a basic experimental was conducted in order to investigate combustion mechanism of radical induced injection before the experiment execution for actual engine using the modified SI engine. The bulk combustion phenomenon of radical induced ignition method was analyzed from the basic experiment by using a constant volume chamber. Volume value of sub-chamber used in this experiment is approximately $0.2\%$ of one of the main combustion chamber. In this paper, combustion characteristics using radical induced injection method was compared with that of using spark ignition method according to change in the engine speed and equivalence ratio. As a result, in the case of the radical induced injection engine, the combustion duration and cycle variation were respectively reduced ranged from $\Phi$(equivalence ratio)=0.8 (lean mixture ratio) to $\Phi$=1.0 (stoichiometric ratio).

Fabrication and Mechanical Properties of Dense WSi2-20vol.%SiC Composite by High-Frequency Induction-Heated Combustion Synthesis (고주파유도가열 연소합성에 의한 치밀한 WSi2-20vol.%SiC 복합재료 제조 및 기계적 특성)

  • Oh, Dong-Young;Kim, Hwan-Cheol;Lee, Sang-Kwon;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Dense $WSi_2$-20vol.%SiC composite was synthesized by high-frequency induction-heated combustion synthesis(HFIHCS) method within 2 minutes in one step from elemental powder mixture of W, Si and C. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. Highly dense $WSi_2$-20vol.%SiC with relative density of up to 97% was produced under simultaneous application of 60MPa pressure and the induced current. The average grain size of $WSi_2$ was about $5.2{\mu}m$. The hardness and fracture toughness values obtained were 1700kg/$mm^2$ and $4.4MPa{\cdot}m^{1/2}$, respectively.

A Study on the Comparison of the Combustion Characteristics among an IDI, a HSDI Diesel Engine and a SI Engine using One-zone Heat Release Analysis (단일영역 열발생량 계산법을 사용한 IDI, HSDI 디젤엔진과 SI엔진의 연소특성 비교에 관한 연구)

  • Lee Sukyoung;Jeong Kuseob;Jeon Chunghwan;Chang Yongjune
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.21-30
    • /
    • 2005
  • Heat release analysis is a very importent method in understanding the combustion phenomena inside an engine cylinder. In this study, one-zone heat release analysis was used with the mesured cylinder pressures of an IDI(indirect injection), a HSDI(high speed direct injection) and a SI(spark ignition) engine. It has benefits of simple equation, fast speed, reliability. The object of the study is to compare the combustion characteristics among an IDI, a HSDI and SI engine. Result of analysis, the maximum heat release rate of a HSDI is higher than an IDI because of long ignition delay period. The heat release curve of a IDI is more linear than an HSDI, so the combustion characteristics of a IDI is similiar to that of an SI engine. There is a suggestion here that the combustion efficiency of a HSDI is highest of that of all engines because of the smallest heat transfer loss of all engines.

Mechanical Properties and Fabrication of Nanostructured ReSi1.75 by High Frequency Induction Heated Combustion Synthesis (고주파유도가열 연소합성에 의한 나노구조 ReSi1.75 제조 및 기계적 성질)

  • Kim, Byung-Ryang;Kim, Su-Chul;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.16-21
    • /
    • 2009
  • Nanostructured $ReSi_{1.75}$ was synthesized to have high density via rapid and cost effective process named as high-frequency induction heated combustion synthesis(HFIHCS) method. For the process, mechanically activated Re-Si powder was used, which had been prepared by mechanical ball milling of Re and Si powders with mixing ratio of 1:1.75. Both combustion synthesis and densification were accomplished simultaneously by applying electric current and mechanical pressure of 80 MPa during the process. The average grain size, hardness, and fracture toughness of the compound were 210 nm, 1085 $kg/mm^2$ and 4 $MPa{\cdot}m^{1/2}$, respectively. The experimental results show that HFIHCS is a promising process for synthesis of nanostructured $ReSi_{1.75}$ which has a potential for both high temperature and thermo-electric applications.

Simulation of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Hydrogen (수소 2행정 프리피스톤엔진의 SI-HCCI 변화에 관한 수치해석적 연구)

  • Hung, Nguyen Ba;Park, Kyuel;Lim, Ocktaeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.472-479
    • /
    • 2013
  • A free piston linear engine could be operated under HCCI combustion due to its variable compression ratios. To obtain HCCI combustion, the free piston linear engine needs a high compression ratio to achieve auto-ignition of the fuel/air mixture. In this study, an idea for obtaining a high compression ratio using the transition from SI combustion to HCCI combustion was proposed. The fuel used in this study is hydrogen, which is considered to be an environmentally friendly fuel. Besides, the effects of key parameters such as equivalence ratio (${\phi}$), load resistance ($R_L$) and intake temperature ($T_{in}$) on the SI-HCCI transition were numerically investigated. The simulation results show that the SI-HCCI transition is successful without any significant reduction of in-cylinder pressure as the intake temperature is increased from $T_{in}$=300K (SI mode) to $T_{in}$=450K (HCCI mode), while the load resistance and equivalence ratio are retained respectively at $R_L=120{\Omega}$ and ${\phi}$=0.6 in both SI mode and HCCI mode.

A Study on Emission Characteristics according to Spark Plug Location in a Single SI Engine (점화플러그 위치에 따른 SI 단기통 엔진의 배출가스특성에 관한 연구)

  • Kim, Dae-Yeol;Han, Young-Chool;Baik, Doo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2082-2087
    • /
    • 2004
  • In this study, the variation of spark plug location in the combustion chamber was investigated for the sake of emission characteristics from SI engine by using PDA valve. The swirl is ong of the important parameters that effects emission characteristics. PDA valve has been used to satisfy the requirements of sufficient swirl generation to improve combustion and emission reduction to effect on flow profile on a combustion chamber. Especially, the variation of spark plug location have an important effect to analyze exhaust gas and the early flame propagative process. Therefore, this test is forced that injection timing, spark timing and intake air motion govern the stable combustion. From the results, it showed that the variable spark plug location and PDA valve can be reduced exhaust gas.

  • PDF

Study on Synthesis and Sintering Characterization of Ti-Si System Ceramics by Self-Propagating High Temperature Synthesis (SHS법에 의한 Ti-Si계 세라믹스의 합성 및 소결체의 특성에 관한 연구)

  • Kim, Do-Kyung;Park, Sung;Cho, Duk-Ho;Cho, Kurn;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.265-274
    • /
    • 1994
  • Intermetallic Ti-Si system ceramics were synthesized from stochiometric mixtures of titanium and silicone powders in vacuum by Self-propagating High-temperature Synthesis(SHS). In each cases of Ti5Si3, Ti5Si4 and TiSi, and TiSi2 synthesis, 20wt% product dilution, direct ignition and SHS chemical furnace method were employed. The combustion modes, which were observed during the synthesis process by using the high speed camera, of Ti5Si3, Ti5Si4, TiSi, and TiSi2 exhibit spin, osciallatory, steady-state, and spin combustion, respectively. With increasing Ti/Si molar ratio an decrease of combustion velocities was found. From the results on the measurement of the flexural strength, the specimen hot pressed at 135$0^{\circ}C$ for 30 min using synthesized Ti5Si4 powders showed the highest flexural strength at 215 MPa.

  • PDF

Investigation of the Knocking Phenomenon in SI Engines (가솔린 엔진에서의 노킹 현상 해석)

  • Min, Kyoung-Doug
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.29-35
    • /
    • 2000
  • Knock in SI engines causes physical damage to the piston and combustion chamber and lowers the thermal efficiency. The increase in compression ratio which can improve the thermal efficiency and engine performance has been limited by engine knock. So the need of making clear the knocking phenomenon has increased. This paper reviews the methods of knock detection, characterization and prediction of knock with the reduced chemical kinetic modeling.

  • PDF

Low-Temperature Combustion of Ethanol over Supported Platinum Catalysts (백금 담지 촉매상에서 에탄올의 저온연소)

  • Kim, Moon Hyeon
    • Journal of Environmental Science International
    • /
    • v.26 no.1
    • /
    • pp.67-78
    • /
    • 2017
  • Combustion of ethanol (EtOH) at low temperatures has been studied using titania- and silica-supported platinum nanocrystallites with different sizes in a wide range of 1~25 nm, to see if EtOH can be used as a clean, alternative fuel, i.e., one that does not emit sulfur oxides, fine particulates and nitrogen oxides, and if the combustion flue gas can be used for directly heating the interior of greenhouses. The results of $H_2-N_2O$ titration on the supported Pt catalysts with no calcination indicate a metal dispersion of $0.97{\pm}0.1$, corresponding to ca. 1.2 nm, while the calcination of 0.65% $Pt/SiO_2$ at 600 and $900^{\circ}C$ gives the respective sizes of 13.7 and 24.6 nm when using X-ray diffraction technique, as expected. A comparison of EtOH combustion using $Pt/TiO_2$ and $Pt/SiO_2$ catalysts with the same metal content, dispersion and nanoparticle size discloses that the former is better at all temperatures up to $200^{\circ}C$, suggesting that some acid sites can play a role for the combustion. There is a noticeable difference in the combustion characteristics of EtOH at $80{\sim}200^{\circ}C$ between samples of 0.65% $Pt/SiO_2$ consisting of different metal particle sizes; the catalyst with larger platinum nanoparticles shows higher intrinsic activity. Besides the formation of $CO_2$, low-temperature combustion of EtOH can lead to many other pathways that generate undesired byproducts, such as formaldehyde, acetaldehyde, acetic acid, diethyl ether, and ethylene, depending strongly on the catalyst and reaction conditions. A 0.65% $Pt/SiO_2$ catalyst with a Pt crystallite size of 24.6 nm shows stable performances in EtOH combustion at $120^{\circ}C$ even for 12 h, regardless of the space velocity allowed.