Browse > Article
http://dx.doi.org/10.4150/KPMI.2009.16.1.016

Mechanical Properties and Fabrication of Nanostructured ReSi1.75 by High Frequency Induction Heated Combustion Synthesis  

Kim, Byung-Ryang (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University)
Kim, Su-Chul (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University)
Publication Information
Journal of Powder Materials / v.16, no.1, 2009 , pp. 16-21 More about this Journal
Abstract
Nanostructured $ReSi_{1.75}$ was synthesized to have high density via rapid and cost effective process named as high-frequency induction heated combustion synthesis(HFIHCS) method. For the process, mechanically activated Re-Si powder was used, which had been prepared by mechanical ball milling of Re and Si powders with mixing ratio of 1:1.75. Both combustion synthesis and densification were accomplished simultaneously by applying electric current and mechanical pressure of 80 MPa during the process. The average grain size, hardness, and fracture toughness of the compound were 210 nm, 1085 $kg/mm^2$ and 4 $MPa{\cdot}m^{1/2}$, respectively. The experimental results show that HFIHCS is a promising process for synthesis of nanostructured $ReSi_{1.75}$ which has a potential for both high temperature and thermo-electric applications.
Keywords
High-frequency induction heated combustion synthesis; $ReSi_{1.75}$; Hardness; Fracture toughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Kuwabara, H. Inui and M. Yamaguchi: Intermetallic. 10 (2002) 129.   DOI   ScienceOn
2 H. Gleiter: Nanostruct. Mater., 6 (1995) 3.   DOI   ScienceOn
3 J. Karch, R. Birringer and H. Gleiter: Nature, 330 (1987) 556.   DOI   ScienceOn
4 A. M. George, J. Iniguez and L. Bellaiche: Nature, 413 (2001) 54.   DOI   ScienceOn
5 D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez. D. Garcia and B. Alascio: J. Magn. Mater., 241 (2002) 207.   DOI   ScienceOn
6 K. Kurokawa, H. Hara, H. Takahashi and H. Takahashi: Vacuum, 65 (2002) 497.   DOI   ScienceOn
7 D. Y. Oh, H. C. Kim, J. K. Yoon and I. J. Shon: J. Alloys and Compd., 395 (2005) 174.   DOI   ScienceOn
8 J. Milne: Instant Heat, Kinetic Metals Inc., Derby, CT (1985).
9 Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens: Thermal Conductivity, IFI/Plenum, New York, (1970) 1324.
10 A. Heinrich, H. Griebmann, G. Behr, L. Ivanenko, J. Schumann and H. Vinzelberg: Thin solid films, 381 (2001) 287.   DOI   ScienceOn
11 V. S. Nesphor and G. V. Samsonov: Phys. Met. Metallogr, 11 (1960) 146.
12 M. Sommer, W. D. Schubert, E. Zobetz and P. Warbichler: Int. J. of Refractory Met. & Hard Mat., 20 (2002) 41.   DOI   ScienceOn
13 D. Hreniak and W. Strek: J. Alloys Compd., 341 (2002) 183.   DOI   ScienceOn
14 U. Gottlieb, B. Lambert-Andron, F. Nava, M. Affronte and O. Rouault: J appl Phys., 78 (1995) 3902.   DOI   ScienceOn
15 Z. Fang and J. W. Eason: Int. J. of Refractory Met. & Hard Mater., 13 (1995) 297.   DOI   ScienceOn
16 A. I. Y. Tok, I. H. Luo and F. Y. C. Boey: Mat. Sci. Eng. A, 383 (2004) 234.   DOI   ScienceOn
17 I. J. Shon, D. K. Kim, I. Y. Ko, J. K. Yoon and K. T. Hong: Mater. Sci. For., 534 (2007) 525.   DOI
18 I.-J. Shon, H.-K. Park, H.-C. Kim, J.-K. Yoon, K.-T. Hong and I.-Y. Ko: Scripta Matere., 56 (2007) 665.   DOI   ScienceOn
19 C. Suryanarayana, M. Grant Norton: X-ray Diffraction A Practical Approach, Plenum Press, New York, (1998) 213.
20 C. Xu, J. Tamaki, N. Miura and N. Yamazoe: Sens. Actuators B, 3 (1991) 147.   DOI   ScienceOn
21 E. S. Ahn, N. J. Gleason, A. Nakahira and J. Y. Ying: Nano Lett., 1 (2001) 149.   DOI   ScienceOn
22 K. Niihara, R. Morena and D. P. H. Hasselman: J. Mater. Sci. Lett., 1 (1982) 12.   DOI