• 제목/요약/키워드: SI Analysis

검색결과 5,588건 처리시간 0.03초

SiC 첨가한 ZrO2의 기계적 특성에 대한 와이블 통계 해석 (Weibull Statistical Analysis on Mechanical Properties in ZrO2 with SiC Additive)

  • 남기우;김선진;김대식
    • 대한기계학회논문집A
    • /
    • 제39권9호
    • /
    • pp.901-907
    • /
    • 2015
  • 비커스 경도 실험은 세라믹스 재료의 경도를 특성화하는데 사용되는 일반적인 실험법이다. 그러나 경도도 하나의 확률변수로 취급하는 것이 일반적이다. 본 연구의 목적은 단상 $ZrO_2$ 와 SiC 첨가한 $ZrO_2/SiC$ 복합 세라믹스의 굽힘강도와 비커스 경도의 통계적 성질을 조사하는 것이다. 본 연구에서는 와이블 통계 해석에 기초하여 그들의 결과를 특성치와 변동을 비교 고찰하였다. 굽힘강도 및 비커스 경도는 모두 와이블 분포에 비교적 잘 적합할 수 있음을 알았다. 또한 단상 $ZrO_2$ 와 SiC 첨가한 $ZrO_2/SiC$ 복합 세라믹스와 그들의 열처리재에 대한 비커스 경도의 확률분포에 대한 척도 및 형상 파라메터 값을 평가하였다.

급속응고 Al-Si계 합금의 단조공정에 대한 유한요소 해석 (Finite Element Analysis for Forging Processes of Rapidly Solidified Al-Si Alloys)

  • 손현택
    • 한국분말재료학회지
    • /
    • 제5권1호
    • /
    • pp.57-63
    • /
    • 1998
  • The densification behaviors of rapidly solidified Al-Si alloys under high temperature processing were investigated. In general, it was difficult to establish optimum process variables for forging condition through experimentation, because this was costly and time consuming. In this paper, to overcome these problems, we compared the experimental result to the finite element analysis for forging processes of rapidly solidified Al-Si alloys. The results of these simulations helped understand the distribution of relative density during various forging processes. This information is expected to assist in improving rapidly solidified Al-Si alloys forging operations.

  • PDF

SiC Based Single Chip Programmable AC to DC Power Converter

  • Pratap, Rajendra;Agarwal, Vineeta;Ravindra, Kumar Singh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권6호
    • /
    • pp.697-705
    • /
    • 2014
  • A single chip Programmable AC to DC Power Converter, consisting of wide band gap SiC MOSFET and SiC diodes, has been proposed which converts high frequency ac voltage to a conditioned dc output voltage at user defined given power level. The converter has high conversion efficiency because of negligible reverse recovery current in SiC diode and SiC MOSFET. High frequency operation reduces the need of bigger size inductor. Lead inductors are enough to maintain current continuity. A complete electrical analysis, die area estimation and thermal analysis of the converter has been presented. It has been found that settling time and peak overshoot voltage across the device has reduced significantly when SiC devices are used with respect to Si devices. Reduction in peak overshoot also increases the converter efficiency. The total package substrate dimension of the converter circuit is only $5mm{\times}5mm$. Thermal analysis performed in the paper shows that these devices would be very useful for use as miniaturized power converters for load currents of up to 5-7 amp, keeping the package thermal conductivity limitation in mind. The converter is ideal for voltage requirements for sub-5 V level power supplies for high temperatures and space electronics systems.

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.

입자강화 복합재료의 파괴인성에 관한 프랙탈 해석 (Fractal analysis on fracture toughness of particulate composites)

  • 김엄기;남승훈;고성위
    • 한국해양공학회지
    • /
    • 제10권4호
    • /
    • pp.84-91
    • /
    • 1996
  • A fractal analysis on fracture surface of aluminium-particulate SiC composites was attempted. As the volume fraction of SiC in composites increases, the fractal dimension tends to increase. However, no correlation between the fractal dimension and the fracture toughness in terms of critical energy release rate was observed. Since the fractal dimension represents the roughness of fracture surface, the fracture toughness would be a function of not only fracture surface roughness but also additional parameters. Thus the applicability of fractal analysis to the estimation of fracture toughness must depend on the proper choice and interpretation of additioal paramerters. In this paper, the size of characteristic strctural unit for fracture was considered as an additional parameter. As a result, the size appeared to be a function of only volume fraction of SiC. Finally, a master curve for fracture toughness of aluminium-particulate SiC composites was proposed as a function of fractal dimension and volume fraction of SiC.

  • PDF

X-ray Diffraction Analysis of Residual Stress in Laminated Ceramic

  • Jin, Young-Ho;Chung, Dong-Yoon
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.458-462
    • /
    • 2011
  • The strength of ceramic was improved by lamination by suppressing the propagation of cracks with compressive residual stress in the face layer of the laminate. Hot pressed SiAlON+SiC/SiC/SiAlON+SiC laminate discs were fabricated for tailored residual stress. The residual stress in this laminate was studied by X-ray diffraction (XRD). There was considerable compressive residual stress in the face layer. A Finite Element Analysis (FEA) was performed to support the measured XRD results and to determine the stress field in the laminate. The residual stress measured by XRD had satisfactory agreement with the analytically calculated and FEA values. The measured value by XRD was -385 ${\pm}$ 20 MPa over most of the face layer. The calculated and FEA values were -386 MPa and -371MPa, respectively. FEA also showed significantly modified stresses and the maximum tensile stress near the edge region which are possible crack generators in the presence of flaws or contact damage.

Analysis of $Si_3N_4$ Ultra Fine Powder Using High-pressure Acid Digestion and Slurry Injection in Inductively Coupled Plasma Atomic Emission Spectrometry

  • 김K.H.;김H.Y.;임H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.159-163
    • /
    • 2001
  • Si3N4 powder has been analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The sample was dissolved by high-pressure acid digestion with HF, H2SO4 (1+1), and HNO3 mix ture. This technique is well suited for the impurity analysis of Si3N4 because the matrix interference is eliminated. A round-robin samples trace elements, such as Ca, W, Co, Al, Fe, Mg, and Na, were determined. For the direct analysis, slurry nebulization of 0.96 mm Si3N4 powder also has been studied by ICP-AES. Emission intensities of Fe were measured as ICP operational conditions were changed. Significant signal difference between slurry particles and aqueous solution was observed in the present experiment. Analytical results of slurry injection and high-pressure acid digestion were compared. For the use of aqueous standard solution for calibration, k-factor was determined to be 1.71 for further application.

Electronic Structure and Bonding in the Ternary Silicide YNiSi3

  • Sung, Gi-Hong;Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권3호
    • /
    • pp.325-333
    • /
    • 2003
  • An analysis of the electronic structure and bonding in the ternary silicide YNiSi₃is made, using extended Huckel tight-binding calculations. The YNiSi₃structure consists of Ni-capped Si₂dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of $(Y^{3+})(Ni^0)(Si^3)^{3-}$ for YNiSi₃constitutes a good starting point to describe its electronic structure. Si atoms receive electrons from the most electropositive Y in YNiSi₃, and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the ${\pi}^*$ orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi₃can be rewritten as $(Y^{3+})(Ni^{2-})(Si^{2-})(Si-Si)^+$, making the Si₂layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si₂double layer possesses single bonds within a dimer with a partial double bond character. Strong Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si₂π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis.

용융함침법에 의한 반응소결 SiC/SiC 복합재료의 특성 평가 (Property Evaluation of Reaction Sintered SiC/SiC Composites Fabricated by Melt Infiltration Process)

  • 이상필;신윤석
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.205-210
    • /
    • 2007
  • SiC/SiC composites and monolithic SiC materials have been fabricated by the melt infiltration process, through the creation of crystallized SiC phase by the chemical reaction of C and Si. The reinforcing material used in this system was a braided Hi-Nicalon SiC fiber with double interphases of BN and SiC. The microstructures and the mechanical properties of RS-SiC based materials were investigated through means of SEM, TEM, EDS and three point bending test. The matrix morphology of RS-SiS/SiC composites was greatly composed of the SiC phases that the chemical composition of Si and C is different. The TEM analysis showed that the crystallized SiC phases were finely distributed in the matrix region of RS-SiC/SiC composites. RS-SiC/SiC composites also represented a good flexural strength and a high density, accompanying a pseudo failure behavior.

Plasma Resistance and Etch Mechanism of High Purity SiC under Fluorocarbon Plasma

  • Jang, Mi-Ran;Paek, Yeong-Kyeun;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.328-332
    • /
    • 2012
  • Etch rates of Si and high purity SiC have been compared for various fluorocarbon plasmas. The relative plasma resistance of SiC, which is defined as the etch rate ratio of Si to SiC, varied between 1.4 and 4.1, showing generally higher plasma resistance of SiC. High resolution X-ray photoelectron analysis revealed that etched SiC has a surface carbon content higher than that of etched Si, resulting in a thicker fluorocarbon polymer layer on the SiC surface. The plasma resistance of SiC was correlated with this thick fluorocarbon polymer layer, which reduced the reaction probability of fluorine-containing species in the plasma with silicon from the SiC substrate. The remnant carbon after the removal of Si as volatile etch products augments the surface carbon, and seems to be the origin of the higher plasma resistance of SiC.