• Title/Summary/Keyword: SI

Search Result 31,436, Processing Time 0.056 seconds

Interface formation and thermodynamics between SiC and thin metal films (SiC와 금속박막간의 계면형성 및 열역학)

  • Chang-Sung Lim;Kwang-Bo Shim;Dong-Woo Shin;Keun-Ho Auh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.62-72
    • /
    • 1996
  • The interface formation and reaction-product morphology between SiC and thin metal films were studied at temperatures between 550 and $1450^{\circ}C$ for various times. The typical reaction layer sequence was CoSi/CoSi+C/CoSi/CoSi+C/ $\cdots$ /SiC reaction at 1050 and $1250^{\circ}C$ for 2 h, while $Ni_2Si/Ni_2Si+C/Ni_2Si/Ni_2Si+C/ {\cdots} /SiC$ at 950 and 105$0^{\circ}C$ for 2 h. Carbon precipitated preferentially on the outer surface and crystallized as graphite above $1450^{\circ}C$ for SiC/Co reaction zone and $1250^{\circ}C$ for SiC/Ni. The mechanism of the periodic band structure formation with carbon precipitation behaviour was discussed in terms of thermodynamic considerations.

  • PDF

Influence of Solidification Condition on the Segregation of SiC Particles in the Al-Si/$SiC_p$ Composites (Al-Si/$SiC_p$ 복합재료에서 SiC의 편석에 미치는 응고 조건의 영향)

  • Kim, Jong-Chan;Kwon, Hyuk-Moo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.180-187
    • /
    • 1997
  • The influence of solidification condition on the segregation of SiC particles in the $Al-xSi/6wt%SiC_p$(x: 6, 10, 14, 18${\cdot}$wt%) composites was investigated in the study. The results are as follows: 1) During the counter-gravity unidirectional solidification of $Al-Si/SiC_p$ composites melt, most of the SiC particles are pushed to the top of the casting. 2) The SiC particles pushing in the $Al-Si/SiC_p$ composite melts are not observed, when the interface velocity of melts increases more than 1.41 ${\mu}m/sec$. 3) The SiC particles are entrapped in the interdendrite regions, when the sizes of SiC particles in the $Al-Si/SiC_p$ composites are large than ${\varphi}22{\mu}m$.

  • PDF

Siliconizing of Bonded Couple between Fe-5.8at.%Si and(Si Wafer or Fe-Si Alloy) (Fe-5.8 at.%Si과 (Si 웨이퍼 또는 Fe-Si합금)과의 접합에 의한 규소침투처리)

  • 이성열;정건영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.134-144
    • /
    • 2003
  • Reactive diffusion couples between Fe-5.8at.%Si and (Si wafer, $FeSi_2$, or FeSi alloy) were heat-treated at 1423k. The only layer of $Fe_3Si$ phase was formed in each diffusion couple. The width of $Fe_3Si$ layer was proportional to square root of diffusion time in each kind of diffusion couple. Growth rate of $Fe_3Si$ layer was relied on the concentration of Si in the supplied source of Si atoms. Interdiffusion coefficient of $Fe_3Si$ has been determined from the derived relation between growth rate constant and interdiffusion coefficient in this work. It was shown that the behavior of Kirkendall's void in $Fe_3Si$ layer was not affected by the kind of Si source. But solid solution $\alpha$ was formed in the diffusion couple between Fe-5.8 at.%Si and $Fe_3Si$ alloy. Kirkendall's voids in diffusional $\alpha$ were neglectively smaller than the case of $Fe_3Si$ phase growth.

Effect of buffer layers on preparation of Sol-Gel processed PZT thin films (Sol-Gel법에 의한 PZT박막 제조에서 완충층의 영향)

  • 김종국;박지련;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.307-314
    • /
    • 1998
  • PZT thin films were fabricated by the Sol-gel method. Starting materials used for the preparation of the stock solution were Pb-acetate trihydrate, Zr-normal propoxide and Ti-isopropoxide. 2-Methoxyethanol and iso-propanol were used for solution. For studying the diffusion of Pb ion into the substrates. We used bare Si substrate, $SiO_2/Si$ substrates which was produced by thermal oxidation and $TiO_2/SiO_2/Si$ which was mad by Sol-gel method. Densification and adhesion of thin films were observed by SEM. Phase formation of thin films and diffusion of Pb ion into the substrate were examined by XRD and ESCA, respectively. In the case of bare Si and $SiO_2/Si$ substrate, we obtained the perovskite phase at $700^{\circ}C$ and restricted a little the diffusion of Si ion into the film with $SiO_2$ buffer layer. In the case of $TiO_2/SiO_2/Si$, perovskite phase were obtained at $500^{\circ}C$ and the diffusion of Pb ion and Si ion were restriced.

  • PDF

Roles of i-SiC Buffer Layer in Amorphous p-SiC/i-SiC/i-Si/n-Si Thin Film Solar Cells (비정질 p-SiC/i-SiC/i-Si/n-Si 박막 태양전지에서 i-SiC 완충층의 역할)

  • Kim, Hyun-Chul;Shin, Hyuck-Jae;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1155-1159
    • /
    • 1999
  • Thin film solar cells on a glass/$SnO_2$ substrate with p-SiC/i-Si/n-Si heterojunction structures were fabricated using a plasma-enhanced chemical-vapor deposition system. The photovoltaic properties of the solar cells were examined with varying the gas phase composition, x=$CH_4/\;(SiH_4+CH_4)$, during the deposition of the p-SiC layer. In the range of x=0~0.4, the efficiency of solar cell increased because of the increased band gap of the p-SiC window layer. Further increase in the gas phase composition, however, led to a decrease in the cell efficiency probably due to in the increased composition mismatch at the p-SiC/i-Si layers. As a result, the efficiency of a glass/$SnO_2$/p-SiC/i-SiC/i-Si/n-Si/Ag thin film solar cell with $1cm^2$ area was 8.6% ($V_{oc}$=0.85V, $J_{sc}$=16.42mA/$cm^2$, FF=0.615) under 100mW/$cm^2$ light intensity.

  • PDF

Structural Study of Epitaxial NiSi on Si (001) Substrate by Using Density Functional Theory (DFT) (DFT를 이용한 Si (001) 기판의 에피택시 NiSi 구조 연구)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.65-68
    • /
    • 2007
  • An epitaxial NiSi structure on Si (001) substrate was studied by using density functional theory (DFT). Orhorhombic and B2-NiSi structures were compared first. B2 structure was further considered as it has same crystal structure as Si and the lattice mismatch between B2 and Si is small, compared to orthorhombic-NiSi. The lattice parameters of x- and y-direction in B2-NiSi structure were modified to match with those in Si (001). The size reduction of the lattice parameter of B2-NiSi to match with that of Si increased the lattice parameter of z-direction by 10.5%. Therefore, we propose that an optimum structure of NiSi for epitaxial growth on Si (001) is a tetragonal structure.

  • PDF

Mechanical and Tribological Properties of Si-SiC-Graphite Composites (Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성)

  • 김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF

Fabrication of Reaction Sintered SiC Materials by Complex Slurry with Nano Size Particles (나노입자 혼합 복합슬러리를 이용한 반응소결 SiC 재료의 제조)

  • Lee Sang-Pill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.425-431
    • /
    • 2005
  • The efficiency of complex slurry preparation route for developing the high performance SiC matrix of $RS-SiC_{f}/SiC$ composites has been investigated. The green bodies for RS-SiC materials prior to the infiltration of molten silicon were prepared with various C/SiC complex slurries, which associated with both the sizes of starting SiC particles and the blending conditions of starting SiC and C particles. The characterization of Rs-SiC materials was examined by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, the process optimization is also discussed. The flexural strength of Rs-SiC materials greatly depended on the content of residual Si. The decrease of starting SiC particle size in the C/SiC complex slurry was effective for improving the flexural strength of RS-SiC materials.

The Formation of Epitaxial PtSi Films on Si(100) by Solid Phase Epitaxy (고상 에피택셜 성장에 의한 PtSi 박막의 형성)

  • 최치규;강민성;이개명;김상기;서경수;이정용;김건호
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.319-326
    • /
    • 1995
  • 초고진공에서 Si(100)-2X1 기판 위에 Pt를 약 100$\AA$의 두께로 증착한 후 in-situ로 열처리하는 고상에피택셜 성장법으로 PtSi 박막을 형성시켰다. XRD와 XPS 분석 결과 $200^{\circ}C$로 열처리한 시료에서는 Pt3Si, Pt2Si와 PtSi의 상이 섞여 있었으나 50$0^{\circ}C$로 열처리한 시료에서는 PtSi의 단일상만 확인되었으며, 형성된 PtSi 박막은 주상구조와 판상구조의 이중구조를 나타내었다. 기판 온도를 $500^{\circ}C$로 유지하면서 Pt를 증착한 후 $750^{\circ}C$에서 열처리한 경우에는 판상구조를 갖는 양질의 PtSi 박막이 에피택셜 성장되었다. HRTEM분석 결과 에피텍셜 성장된 PtSi와 기판 Si(100)의 계면은 PtSi[110]//Si[110], ptSi(110)//Si(100)의 정합성을 가졌다. 판상구조를 갖는 PtSi상의 에피택셜 방향은 기판과 열처리 온도에는 의존하나 열처리 시간에는 무관한 것으로 나타났다.

  • PDF