• Title/Summary/Keyword: SHPB 실험

Search Result 22, Processing Time 0.028 seconds

Numerical Investigation of Frictional Effects and Compensation of Frictional Effects in Split Hopkinson Pressure Bar (SHPB) Test (수치해석을 이용한 SHPB 시험의 마찰영향 분석과 보정에 대한 연구)

  • Cha, Sung-Hoon;Shin, Hyun-Ho;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.511-518
    • /
    • 2010
  • The split Hopkinson pressure bar (SHPB) has been widely used to determine the mechanical properties of materials at high loading rates. However, to ensure test reliability, the source of measurement error must be identified and eliminated. During the experiment, specimens were placed between the incident and the transmit bar. Contact friction between the test bars and specimen may cause errors. In this study, numerical experiments were carried out to investigate the effect of friction on the test results. In the SHPB test, the stress measured by the transmitted bar is assumed to be the flow stress of the test specimen. However, performing numerical experiments, it was shown that the stress measured by the transmit bar is axial stress components. When the contact surface is frictionless, the flow stress and axial stress of the specimen are approximately equal. On the other hand, when the contact surface is not frictionless, the flow stress and axial stress are no longer equal. The effect of friction on the difference between the flow stress and axial stress was investigated.

Estimation of Dynamic Brazilian Tensile Strengths of Rocks Using Split Hopkinson Pressure Bar (SHPB) System (스플릿 홉킨슨 압력봉 실험장비를 이용한 암석의 동적 압열인장강도 평가에 관한 연구)

  • Yang, Jung-Hun;Ahn, Jung-Lyang;Kim, Seung-Kon;Song, Young-Su;Sung, Nak-Hoon;Lee, Youn-Kyou;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, we estimated the dynamic tensile strength and strain rate from Brazilian tensile test using Split Hopkinson Pressure Bar (SHPB) system. A pulse shaping technique, which controls the shape of the impactinduce incident waves, was used for achieving the dynamic stress equilibrium and constant strain rate before fracture of rock samples. Three kinds of rock type, Inada granite, Kimachi sandstone and Tage tuff were prepared as 50mm in diameter and 26 mm in thickness. The high-speed videography system was used to observe the fracture processes of the rock samples. As the results of the tests, the ratio of dynamic tensile strength and static tensile strength was 11.9 for Inada granite, 8.5 for Kimachi sandstone and 9.2 for Tage tuff.

Experimental Study on Deformation and Failure Behavior of Limestones under Dynamic Loadings (동적하중 하에서 석회암의 변형 및 파괴거동에 관한 실험적 연구)

  • Kang, Myoung-Soo;Kang, Hyeong-Min;Kim, Seung-Kon;Cheon, Dae-Sung;Kaneko, Katsuhiko;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2012
  • Information on the deformation behavior and fracture strength of rocks subjected to dynamic loadings is important to stability analyses of underground openings underground vibration due to rock blasts, earthquakes and rock bursts. In this study, Split Hopkinson Pressure Bar (SHPB) system was applied to estimate dynamic compressive and tensile fracture strengths of limestone and also examine deformation behavior of limestones under dynamic loadings. A micro-focus X-ray CT scanner was used to observe non-destructively inside the impacted limestone specimens. From the dynamic tests, it was revealed that the limestone have over 140MPa dynamic compressive strength and the strain-rate dependency of the strength. Dynamic Brazilian tensile strength of the limestone exceeds 21MPa and shows over 3 times static Brazilian tensile strength.

Experimental Techniques for Dynamic Mechanical Characteristics of Rock Materials (암석의 동역학적 특성 규명을 위한 실험기법의 분석)

  • Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.30-43
    • /
    • 2020
  • Rock dynamics is a relatively new discipline to study the mechanical behaviors of rock materials (or rock masses) under dynamic loading conditions. Many rock mechanics and rock engineering issues are concerned with the dynamic phenomena such as mining development, civil engineering, earthquake, military science, and various disasters. The significance of rock dynamic researches has been increased in these days. This paper introduces conventional experimental techniques for rock dynamic experimental methods and the particular characteristics of rock dynamic behaviors with several remarkable recent studies.

Understanding the Principles of Wheatstone Bridge Circuit (휘트스톤 브리지 회로의 원리에 대한 이해)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.35 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • The Wheatstone bridge is an important electrical circuit that is widely used to measure extremely small resistance changes in strain gages. The strain gages are attached to the structure or specimen whose deformation is to be detected. The Wheatstone bridge finds one of its major applications in the areas of static and dynamic strength tests for various engineering materials. In the split Hopkinson pressure bar (SHPB) system, for example, the bridge circuit is required to measure the dynamic strains of the incident and transmitted bars along which the stress wave propagates. In this article, the principles of the Wheatstone bridge circuit are in detail explained for easy reference during laboratory experiments associated with rock dynamics. Especially, the circuit arrangements of the quater, half, and full bridges are presented with their basic uses.

A Study on the Damage Assesment of Artificial Brittle Materials subjected to Impact Leading (충격하중을 받은 인공취성재료의 손상평가에 관한 연구)

  • Cho, Sang-Ho;Jo, Seul-Ki;Cheon, Dae-Sung;Synn, Joong-Ho;Yang, Hyung-Sik;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.457-464
    • /
    • 2008
  • Dynamic fracture mechanism of rock is important to improve rapid excavation method and develop precise damage assesment of rock mass in the vicinity of an excavation. In order to investigate dynamic fracture characteristics and dynamic damage mechanism of brittle materials, this study employed pulse shape-controlled Split Hopkinson Pressure Bar (SHPB) system. The P- and S-wave velocities of the tested samples were measured before and after tests to examine damage of the samples. The decay ratios of the Ultrasonic wave velocities increased with impart velocities and the samples which have lower strength showed higher permanent strain significantly.

SHPB기법을 사용한 고변형률 속도 하중하에서의 합성수지(PH162/ PB160)의 동적 변형 거동

  • 김성현;이억섭;이종원;황시원;조규상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.47-47
    • /
    • 2004
  • 충격하중을 받는 재료의 거동에 관한 연구는 공학의 넓은 분야에 깊은 관계를 가지고 있다. 특히 동적하중을 받는 경계조건 하에서 사용되는 구조물을 정밀하게 설계 제작하는 필요성이 고조됨에 따라 여러 재료들의 고변형률 속도로 변형될 경우에 대한 역학적인 성질이 중요한 과제로 떠오르고 있다. 구조물의 건전성과 신뢰성을 향상시키기 위해서는 구조물이 실제적으로 받는 여러 조건의 하중하에서의 실험적으로 정밀하게 획득된 정확하고, 완벽한 재료 물성치가 필요하다. (중략)

  • PDF

A Study on the Dynamic Material's Characteristics of Tungsten Alloy using Split Hopkinson Pressure Bar (홉킨슨 압축봉 장치를 이용한 텅스텐 합금의 동적 재료 특성에 관한 연구)

  • Hwang, Doo-Soon;Rho, Beong-Lae;Hong, Sung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.92-99
    • /
    • 2005
  • Tungsten heavy metal is characterized by a high density and novel combination of strength and ductility. Among them, 90W-7Ni-3Fe is used for applications, where the high specific weight of the material plays an important role. They are used as counterweights, rotating inertia members, as well as fur defense purposes(kinetic energy Penetrators, etc.). Because of these applications, it is essential to detemine the dynamic characteristics of tungsten alloy. In this paper, Explicit FEM(finite element method) is employed to investigate the dynamic characteristics of tungsten heavy metal under base of stress wave propagation theory for SHPB, and the model of specimen is divided into two parts to understand the phenomenon that stress wave penetrates through each tungsten base and matrix. This simulation results were compared to experimental one and through this program, the dynamic stress-strain curve of tungsten heavy metal can be obtained using quasi static stress-strain curve of pure tungsten and matrix.

A Study on the Dynamic Behavior of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 동적 변형 거동에 관한 연구)

  • Seo, Yongseok;Lee, Young-Shin;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.206-216
    • /
    • 2017
  • This paper studies on the dynamic properties of Ti-6Al-4V alloy. After forming the four different micro structures(equiaxed, lamellar, and 2 bimodals) through heat treatments, static and dynamic properties of each structure were investigated quantitatively. Dynamic behaviors of the alloy are observed by the compressive split Hopkinson pressure bar(SHPB) tests. In additon, parameters of Johnson-Cook equation were determined from the SHPB test results. In order to verify the suitability of the parameters, high velocity impact tests were performed and the results were compared with the numerical analysis results. Although the flow stress and the fracture strain of the bimodal structures were higher than those of the equiaxed structure at the static tests, the superior dynamic properties were observed at the equiaxed structure due to the effects of higher maximum flow stress and fracture strain. From the numerical analysis, J-C parameters which are determined on this study describe well the dynamic behavior of Ti-6Al-4V alloy. Experimental and analysis results are consistent with ${\pm}5%$ of an average error.

Experimental Study on the Dynamic Damage Mechanism of Rocks Under Different Impact Loadings (단계적 충격하중에 의한 암석의 동적손상메커니즘에 관한 실험적 연구)

  • Cho, Sang-Ho;Jo, Seul-Ki;Ki, Seung-Kon;Park, Chan;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.545-557
    • /
    • 2009
  • In order to investigate dynamic damage mechanism of brittle materials, Split Hopkinson Pressure Bar (SHPB) have been adapted to apply different impact levels to rocks in South Korea. High resolution X-ray Computed Tomography (CT) was used to estimate the damage in tested rock samples nondestructively. The cracks which are parallel to the loading axis are visible on the contact surface with the incident bar under lower level of impact. The surface cracks disappeared with increment of impact level due to confined effect between the incident bar and sample, while axial splitting are happened near the outer surface.