• Title/Summary/Keyword: SHOULDER-JOINTS

Search Result 197, Processing Time 0.022 seconds

Correlation between Upper Extremity Muscle Strength and Bat Swing Speed in Elementary School Baseball Players (초등학교 야구선수에 상지 근력과 배트 스윙 속도 간의 상관관계 분석)

  • Park, Chi Bok;Choi, Ah Young;Jeong, Ho Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.239-244
    • /
    • 2019
  • The purpose of this study was to determine the correlation between upper limb muscle power and bat swing speed in elementary school baseball players. This study subjects were 32 subjects. Upper extremity muscle strength was measured in the Both Shoulder joints extensor flexor abductor adductor, Both elbow joints extensor flexor and bat swing speed. The correlation between upper extremity muscle strength and bat swing speed was analyzed using pearson's correlation analysis. There was a significant correlation between dominant upper extremity muscle strength and bat swing speed in the order of shoulder adductor, shoulder abductor, elbow flexor, and shoulder flexor and in correlation between non-dominant upper extremity muscle strength and bat swing speed in the order of shoulder adductor, elbow flexor, shoulder abductor, shoulder extensor, elbow extensor, and shoulder flexor. From these results, it can be seen that the stronger the upper extremity muscle strength, the bat swing speed is the more positive correlation.

The Kinematic Analysis of Handspring Salto Forward Piked (핸드스프링 몸접어 앞공중돌기동작의 운동학적 분석)

  • Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.145-153
    • /
    • 2007
  • The purpose of this study is to compare and analyze the phase-by-phase elapsed time, the COG, the body joint angle changes and the angular velocities of each phase of Handspring Salto Forward Piked performed by 4 college gymnasts through 3D movement analysis program. 1. The average elapsed time for each phase was .13sec for Phase 1, .18sec for Phase 2, .4sec for Phase 3, and .3sec for Phase 5. The elapsed time for Phase 1 to Phase 3 handspring was .35sec on average and the elapsed time for Phase 4 to Phase 5 handspring salto forward piked was .7sec on average. And so it showed that the whole elapsed time was 1.44sec. 2. The average horizontal changes of COG were 93.2 cm at E1, 138. 5 cm at E2, 215.7 cm at E3, 369.2 cm at E4, 450.7 cm at E5, and 553.1 cm at E6. The average vertical changes of COG were 83.1 cm at E1, 71.3 cm at E2, 78.9 cm at E3, 93.7 cm at E4, 150.8 cm at E5, and 97.2 cm at E6. 3. The average shoulder joint angles at each phase were 131.6 deg at E1, 153.5 deg at E2, 135.4 deg at E3, 113.4 deg at E4, 39.6 deg at E5, and 67.5 deg at E6. And the average hip joint angles at each phase were 82.2 deg at E1, 60 deg at E2, 101.9 deg at E3, 161.2 deg at E4, 97.7 deg at E5, and 167 deg at E6. 4. The average shoulder joint angular velocities at each phase were 130.9deg/s E1, 73.1 deg/s at E2, -133.9 deg/s at E3, -194.4 deg/s at E4, 29.4 deg/s at E5, and -50.1 deg/s at E6. And the average hip joint angular velocities at each phase were -154.7 deg/s E1, -96.5 deg/s at E2, 495.9 deg/s at E3, 281.5 deg/s at E4, 90.3 deg/s at E5, and 181.7 deg/s at E6. The results shows that, as for the performance of handspring salto forward piked, it is important to move in short time and horizontally from the hop step to the point to place the hands on the floor and jump, and to stretch the hip joints as much as possible after the displacement of the hands and to keep the hip joints stretched and high in the vertical position at the takeoff. And it is also important to bend the shoulder joints and the hip joints fast and spin as much as possible after the takeoff, and to decrease the speed of spinning by bending he shoulder joints and the hip joints quickly after the highest point of COG and make a stable landing.

Joint mobilization techniques of the shoulder joint dysfunction (견관절 장애와 관절 가동운동)

  • Kim, Suhn-Yeop;Doo, Jung-Hee
    • Physical Therapy Korea
    • /
    • v.2 no.2
    • /
    • pp.108-118
    • /
    • 1995
  • The techniques of joint mobilization and traction are used to improve joint mobility or to decrease pain by restoring accessory movements to the shoulder joints and thus allowing full, nonrestriced, pain-free range of motion. In the glenohumeral joint, the humeral head would be the convex surface, while the glenoid fossa would be the concave surface. The medial end of the clavicle is concave anterioposteriorly and convex superioinferiorly, the articular surface of the sternum is reciprocally curved. The acromioclavicular joint is a plane synovial joint between a small convex facet on lateral end of the clavicle and a small concave facet on the acromion of the scapula. The relationship between the shape of articulating joint surface and the direction of gliding is defined by the Convex-Concave Rule. If the concave joint surface is moving on a stationary convex surface, gliding occur in the same direction as the rolling motion. If the convex surface is moving on a stationary concave surface, gliding will occur in an opposite direction to rolling. Hypomobile shoulder joints are treated be using a gliding technique.

  • PDF

Improved Wearability of the Upper Limb Rehabilitation Robot NREX with respect to Shoulder Motion (어깨의 움직임을 중심으로 한 상지재활로봇 NREX의 착용감 개선)

  • Song, Jun-Yong;Lee, Seong-Hoon;Song, Won-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.318-325
    • /
    • 2019
  • NREX, an upper limb exoskeleton robot, was developed at the National Rehabilitation Center to assist in the upper limb movements of subjects with weak muscular strength and control ability of the upper limbs, such as those with hemiplegia. For the free movement of the shoulder of the existing NREX, three passive joints were added, which improved its wearability. For the flexion/extension movement and internal/external rotation movement of the shoulder of the robot, the ball lock pin is used to fix or rotate the passive joint. The force and torque between a human and a robot were measured and analyzed in a reaching movement for four targets using a six-axis force/torque sensor for 20 able-bodied subjects. The addition of two passive joints to allow the user to rotate the shoulder can confirm that the average force of the upper limb must be 31.6% less and the torque must be 48.9% less to perform the movement related to the axis of rotation.

Chronic locked anterior shoulder dislocation with impaction of the humeral head onto the coracoid: a case report

  • Richard D. Lander;Marc J. O'Donnell
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.212-216
    • /
    • 2023
  • The glenohumeral joint is one of the most commonly dislocated joints. When dislocated, the humeral head typically moves anteriorly and medially within the soft tissues adjacent to the glenoid. We present a case of a 64-year-old female who presented with a locked anterior shoulder dislocation with impaction of the humeral head onto the coracoid. To our knowledge, this is the first reported instance of humeral head impaction onto the coracoid causing the shoulder dislocation to be irreducible by closed means. Complications of this dislocation can include humeral head deformity, pseudoparalysis, brachial plexus injury, and significant pain.

Validity and Reliability of an Inertial Measurement Unit-Based 3D Angular Measurement of Shoulder Joint Motion

  • Yoon, Tae-Lim
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.3
    • /
    • pp.145-151
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the validity and reliability of the measurement of shoulder joint motions using an inertial measurement unit (IMU). Methods: For this study, 33 participants (32 females and 1 male) were recruited. The subjects were passively positioned with the shoulder placed at specific angles using a goniometer (shoulder flexion $0^{\circ}-170^{\circ}$, abduction $0^{\circ}-170^{\circ}$, external rotation $0^{\circ}-90^{\circ}$, and internal rotation $0^{\circ}-60^{\circ}$ angles). Kinematic data on the shoulder joints were simultaneously obtained using IMU three-dimensional (3D) angular measurement (MyoMotion) and photographic measurement. Test-retest reliability and concurrent validity were examined. Results: The MyoMotion system provided good to very good relative reliability with small standard error of measurement (SEM) and minimal detectable change (MDC) values from all three planes. It also presented acceptable validity, except for some of shoulder flexion, shoulder external rotation, and shoulder abduction. There was a trend for the shoulder joint measurements to be underestimated using the IMU 3D angular measurement system compared to the goniometer and photo methods in all planes. Conclusion: The IMU 3D angular measurement provided a reliable measurement and presented acceptable validity. However, it showed relatively low accuracy in some shoulder positions. Therefore, using the MyoMotion measurement system to assess shoulder joint angles would be recommended only with careful consideration and supervision in all situations.

The Joints Characteristics of Al 5052 Aluminium Alloy in Friction Stir Welds (마찰교반 용접조건에 따른 Al 5052 알루미늄 합금의 접합특성)

  • Kang, Dae-Min;Jang, Jin-Suk;Park, Kyong-Do;Lee, Dai-Yeal
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • In this study, the tensile tests and hardness tests were carried out for the joints characteristics in friction stir welds of Al 5052 alloy. Three way factorial design was applied to optimal welding conditions, whose control factors were shoulder diameter, rotation speed and welding speed of tool. From the results of this study, the optimum condition for maximum yield strength was predicted as the shoulder diameter of 15 mm, welding speed of 500mm/min and rotating speed of 1000 rpm. And the presumed optimal yield strength was estimated to be $167.36{\pm}7.82MPa$ with 99% reliability. In addition the increaser rotation speed of tool and the decreaser welding speed, the decreaser the hardness at welding part.

A Comparison of Shoulder Muscle Activities on Sitting Posture and Shoulder Angle

  • Park, Gyeong-ju;Park, Sun-young;Lee, Eun-jae;Jeong, Su-hyeon;Kim, Su-jin
    • Physical Therapy Korea
    • /
    • v.25 no.1
    • /
    • pp.62-70
    • /
    • 2018
  • Background: Sitting posture influences movements of scapulothoracic and glenohumeral joints and changes the shoulder muscle activities. The development and maintenance of correct sitting posture is important for the fundamental treatment of shoulder pain during rehabilitation. Objects: The purpose of this study was to investigate the effects of the sitting postures and the shoulder movements on shoulder muscle activities for both male and female. Methods: Twenty-eight subjects without shoulder-related diseases participated in this experiment. The subjects had randomly adopted three different sitting postures (upright posture, preferred posture, maximum slouched posture) and shoulder flexion angles in scapular plane ($30^{\circ}$, $90^{\circ}$, $120^{\circ}$). Surface electrodes were collected from upper trapezius (UT), anterior deltoid (AD), and posterior deltoid (PD) and the active shoulder range of motion was measured in each sitting posture and shoulder flexion angle. Results: The active range of motions of the shoulder external rotation and the flexion in the scapular plane decreased from the upright posture to the maximum slouched posture (p<.05, mixed-effect linear regression with random intercept, Tukey post-hoc analysis). All muscles showed the highest EMG activities at $120^{\circ}$ shoulder flexion with the maximum slouched posture and did not show the gender differences. Conclusion: Increased shoulder muscle activities may become the potential risk factor for the shoulder impairment and pain if people continuously maintain the maximum slouched posture. Therefore, an upright position is necessary during shoulder exercises, as well as in activities of daily living, including motions involving lifting the arms.

The Effect of Mobilization Combined with Shoulder Active Contraction of Depth between the Coracoid Process and Humeral Head (어깨의 능동 수축을 동반한 관절가동술이 부리돌기와 위팔뼈 머리 사이의 거리에 미치는 영향)

  • Sun-min Kim;Sang-hun Jang
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Purpose: This study examined the distance between the coracoid process and the humeral head using an ultrasonography device when shoulder active contraction were applied according to the guided direction in the end range of shoulder mobilization. This study aims to provide essential data on treating shoulder disease patients. Methods: The subjects of this study were 20 adults with healthy shoulder joints. ultrasonography (US) equipment was used to examine shoulder joint mobilization under two conditions: (1) anteroposterior (AP) joint mobilization and (2) superoinferior (SI) joint mobilization. Shoulder active contraction was assessed in the end range. The distance between the coracoid process and the humeral head was measured. A linear probe was used for US; the frequency was set to 7.5MHz, and the US image display method was set to B-mode. The US measurement values were measured in (1) the starting position, (2) the end range position, and (3) the end range position of the shoulder active contraction, and the moving distance was drawn in a straight line through the US image. The distance was determined as the measurement value, and the average values were compared. Reults: The results were as follows: (1) the measured AP Joint mobilization increased by an average of .52cm from the end range of the joint mobilization with shoulder active contraction; (2) the measured SI Joint mobilization increased by an average of .49cm from the end range of the joint. Conclusion: When shoulder mobilization is applied, the distance between the coracoid process and the humeral head increases when muscle contraction occurs through shoulder active contraction in the end range, according to the therapist's guidance. Therefore, shoulder mobilization combined with shoulder active contraction is an effective treatment method for patients with shoulder injuries.

  • PDF