• Title/Summary/Keyword: SHELL Model

Search Result 1,029, Processing Time 0.027 seconds

Behavioral Characteristics and Safety Management Plan for Fill Dam During Water Level Fluctuation Using Numerical Analysis (수치해석을 이용한 수위변동시 필댐의 거동특성 및 안전관리방안)

  • Jung, Heedon;Kim, Yongseong;Lee, Moojae;Lee, Seungjoo;Tamang, Bibek;Heo, Joon;Ahn, Sungsoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.45-55
    • /
    • 2021
  • In this study, the behavioral characteristics of the fill dam were analyzed during water level fluctuations through a numerical analysis model, and the reservoir safety management plan was prepared. The variation in plastic deviatoric strain, horizontal displacement, stress path, pore water pressure, etc., due to elevation of water level in the upper and lower sides of shell and core were analyzed using numerical analysis software, viz. GTS NX and LIQCA. The analysis results manifest that as the water level in the dam body increases rapidly, the pore water pressure and displacement also increase quickly. It was found that the elevation of the water level causes an increase in pore water pressure in the dam body as well as an increase in the saturation of the dam body and decreased effective stress. It is considered that this type of dam behavior can be the cause of the reduction of strength and stiffness of the dam. Also, it is assumed that the accumulated plastic deviatoric strain due to the deformation of the dam body caused by water infiltration causes an increase in displacement. Based on these experimental results and the results of analyses of the existing reservoir safety diagnosis techniques, an improvement plan for dam safety diagnosis and evaluation criteria was proposed, and these results can be used as primary data while revising dam safety diagnosis guidelines.

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis (하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구)

  • Seokwoo Ham;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • The PIC design method is assigning different stacking sequences for each shell element through the preliminary FE analysis. In previous study, machine learning was applied to the PIC design method in order to assign the region efficiently, and the training data is labeled by dividing each region into tension, compression, and shear through the preliminary FE analysis results value. However, since buckling is not considered, when buckling occurs, it can't be divided into appropriate loading type. In the present study, it was proposed PIC-NTL (PIC design using novel technique for analyzing load type) which is method for applying a novel technique for analyzing load type considering buckling to the conventional PIC design. The stress triaxiality for each ply were analyzed for buckling analysis, and the representative loading type was designated through the determined loading type within decision area divided into two regions of the same size in the thickness direction of the elements. The input value of the training data and label consisted in coordination of element and representative loading type of each decision area, respectively. A machine learning model was trained through the training data, and the hyperparameters that affect the performance of the machine learning model were tuned to optimal values through Bayesian algorithm. Among the tuned machine learning models, the SVM model showed the highest performance. Most effective stacking sequence were mapped into PIC tube based on trained SVM model. FE analysis results show the design method proposed in this study has superior external loading resistance and energy absorption compared to previous study.

Improvement of the Seed Production Method of the Pen Shell -The Occurrence of Larvae and the Early Growth of the Spat- (키조개 채묘의 개발연구 -부유유생의 출현과 부착치패의 초기성장-)

  • YOO Sung Kyoo;LIM Hyun Sig;RYU Ho Youmg;KANG Kyoung Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.206-216
    • /
    • 1988
  • In order to set up a predictive model for effective spat collection of pen shell, Atrina (Servatrina) pectinata, the survival rate and time required at each developmental stage of drifting larvae were surveyed during the period from June 8 to October 16 in 1986 at the Yongku inlet Chilchon Is., Chinhae Bay, the southern part of Korea. And also the experiments of spat collection were carried out In Yongku inlet during the period from July 6 to November 23 in 1987 and In Yoja Bay during the period from July 9 in 1987 to February 15 in 1588. The advent of D-shape larvae ca. $135\times144um $ long had three peaks in that area: August 1, 12 and 25. Umbo shape larvae ca. $300\times317um$ and full grown larvae ca. $455\times450um$ long also sowed three peaks: August 9, August 22 and September 4 for the former, and August 23, September 3 and September 16 for the latter. Nine to ten days was required for D-shape larvae to develop to umbo shape larvae. The instantaneous survival rate was 0.94 with a total survival rate if $54\%$ at this intermorphological stage. The required time of umbo to full grown larvae varied from twelve to fourteen days with a instantaneous survival rate of 0.88 and total survival rate of $19\%$. Twenty-two to twenty-three days was required for each group of the D-shape larvae to reach a fullgrown stage, and their total survival rate was $10\%$ during this developmental period. The number of the spat attached to the spat collector is 0.16 inds. per $m^2$ vertical spat collector in Yongku inlet and 0.48 inds. per $m^2$ horizontal spat collector in Yoja Bay. The average shell length of spat attached was $0.51({\pm}0.15)\;mm$ on September $27,\;38.52({\pm}6.98)\;mm$ on November 21 in 1987 and $49.00({\pm}10.77)mm$ on February 15 in 1988.

  • PDF

Growth and Production of Sinonovacula constricta (Bivalvia) from the Hwaseong Tidal Flat in the Namyang Bay, Korea (가리맛조개(Sinonovacula constricta: Bivalvia)의 성장과 생산 (경기 남양만 화성조간대))

  • Koh, Chul-Hwan;Yang, Mee-Ra;Chang, Won-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1997
  • The present study reports the density, growth and production of a razor clam, Sinollovacula constricta, which is known to be one of the important fishreies catches from the Korean tidal flat. The annual yield reached to about 6,000 metric tons per year till 1994. The study was conducted on the Hwaseong tidal flat located on the central west coast, 40 kilometers south-west from Seoul. The annual yield of the razor clam in this area reached to about 50% of the total catch from the whole Korean coast. Samples were colleted monthly at 14 occasions from May 1992 to August 1993. Density of S. constricta ranged from 92~165 individuals per square meter during the study period. General trend of decreasing density was observed when the animal became older, but an exception was the year class of 1991 whose density was lower than that of 1990. The size of the shell was clearly separated into two classes during fall and winter (from September to February), however, the maximum frequency of the length of small size classes moved to right after February. It indicates a fast growth of young clams from spring to summer. Fast growth of the shell could also be examined by the growth curve. The shell growth of the whole life span was described by the von Bertalanffy equation of $L_t=89.3{\times}[1{\exp}\{-0.58{\times}(t+0.73\}]$. The growth in flesh dry weight was well fitted to the Gompertz growth model with the equation, $W_t=5.00{\times}{\exp}\{-4.31{\times}{\exp}(-0.043{\times}t)\}$. The clam lost about 30% of the body weight during spawning in August. The annual production calculated based on the data from September 1992 to August 1993 amounted to 150 g $DW{\cdot}m^{-2}{\cdot}yr^{-1}$ which was 2~50 fold higher than those of other bivalves occurred in Korea. This estimate was patitioned by each year classes; 87.5 by 1992, 53.4 by 1991, 59.0 by 1990 and -30.0 g $DW{\cdot}m^{-2}{\cdot}yr^{-1}$ by 1989 year class.

  • PDF

Stress and Fatigue Evaluation of Distributor for Heat Recovery Steam Generator in Combined Cycle Power Plant (복합발전플랜트 배열회수보일러 분배기의 응력 및 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.44-54
    • /
    • 2018
  • Stress and fatigue of the distributor, an equipment of the high-pressure evaporator for the HRSG, were evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the results of the piping system analysis model, reaction forces of the tubes connected to the distributor were derived and used as the nozzle load applied to the detailed analysis model of the distributor afterward. Next, the detailed model to analyze the distributor was constructed, the distributor being statically analyzed for the design condition with the steam pressure and the nozzle load. As a result, the maximum stress occurred at the bore of the horizontal nozzle, and the primary membrane stress at the shell and nozzle was found to be less than the allowable. Next, for the transient operating conditions given for the distributor, thermal analysis was performed and the structural analysis was carried out with the steam pressure, nozzle load, and thermal load. Under the transient conditions, the maximum stress occurred at the vertical downcomer nozzle, and of which fatigue life was evaluated. As a result, the cumulative usage factor was less than the allowable and hence the distributor was found to be safe from fatigue failure.

Parameter Optimization and Automation of the FLEXPART Lagrangian Particle Dispersion Model for Atmospheric Back-trajectory Analysis (공기괴 역궤적 분석을 위한 FLEXPART Lagrangian Particle Dispersion 모델의 최적화 및 자동화)

  • Kim, Jooil;Park, Sunyoung;Park, Mi-Kyung;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • Atmospheric transport pathway of an air mass is an important constraint controlling the chemical properties of the air mass observed at a designated location. Such information could be utilized for understanding observed temporal variabilities in atmospheric concentrations of long-lived chemical compounds, of which sinks and/or sources are related particularly with natural and/or anthropogenic processes in the surface, and as well as for performing inversions to constrain the fluxes of such compounds. The Lagrangian particle dispersion model FLEXPART provides a useful tool for estimating detailed particle dispersion during atmospheric transport, a significant improvement over traditional "single-line" trajectory models that have been widely used. However, those without a modeling background seeking to create simple back-trajectory maps may find it challenging to optimize FLEXPART for their needs. In this study, we explain how to set up, operate, and optimize FLEXPART for back-trajectory analysis, and also provide automatization programs based on the open-source R language. Discussions include setting up an "AVAILABLE" file (directory of input meteorological fields stored on the computer), creating C-shell scripts for initiating FLEXPART runs and storing the output in directories designated by date, as wells as processing the FLEXPART output to create figures for a back-trajectory "footprint" (potential emission sensitivity within the boundary layer). Step by step instructions are explained for an example case of calculating back trajectories derived for Anmyeon-do, Korea for January 2011. One application is also demonstrated in interpreting observed variabilities in atmospheric $CO_2$ concentration at Anmyeon-do during this period. Back-trajectory modeling information introduced in this study should facilitate the creation and automation of most common back-trajectory calculation needs in atmospheric research.

Magnitudes of the Harmonic Components Emitted from Utrasonic Contrast Agents in Response to a Diagnostic Utrasound: Theoretical Consideration (진단용 초음파에 의해 가진된 초음파 조영제에서 방사하는 하모닉 성분의 크기: 이론적 고찰)

  • Kang Gwan Suk;Yu Ji Chul;Paeng Dong Guk;Rhim Sung Min;Choi Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.78-86
    • /
    • 2005
  • This study considers the magnitude of the harmonic components radiated from the ultrasonic contrast agents (UCA) activated by a typical diagnostic ultrasound. The nonlinear dynamic response of UCA to a 2 MHz diagnostic ultrasound pulse was predicted using Gilmore Model. The elastic property of the shell membrane of the UCA was ignored in the numerical model. Simulation was carried out for the UCA varying from 1 - 9 $\mu$m in its initial radius and the driving diagnostic ultrasound whose mechanical index (MI) ranges from 0.125 to 8. The powers of the sub. ultra and second harmonics of the acoustic signal from the UCA activated were compared with that of the fundamental component. The results show that. if the UCA is bigger than its resonant size (2 $\mu$m in radius for the present case) the sub harmonic power was much bigger than the fundamental. In particular, the 2nd harmonic component currently used as an imaging parameter for the harmonic imaging, was predicted to be lower in power than both the sub and the ultra harmonic component. This study indicates that, for obtaining harmonic imaging with UCA, the sub or ultra harmonics could be taken as imaging parameters better than the 2nd harmonic component.

A Study on the Dynamic Response of Steel Highway Bridges Using 3-D Vehicle Model (3차원(次元) 차량(車輛)모델을 사용(使用)한 강도로교(鋼道路橋)의 동적응답(動的應答) 관(關)한 연구(硏究))

  • Chung, Tae Ju;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1055-1067
    • /
    • 1994
  • This paper is presented to perform linear dynamic analysis of bridges due to vehicle moving on bridges. The road surface roughness and bridge/vehicle interaction are also considered. The bridge and vehicle are modeled as 3-D bridge and vehicle model, respectively. The road surface roughness of the roadway and bridge decks are generated from power spectral density(PSD) function for good road. The PSD function proposed by C.J. Dodds and J.D. Robson is used to describe the road surface roughness for good road condition. The vehicles are modeled as two nonlinear vehicle model with 7-D.O.F of truck and 12-D.O.F of tractor-trailer and the equations of motion of the vehicles are derived using Lagrange's equation. The main girder and concrete deck are modeled as beam and shell element, respectively and rigid link is used between main girder and concrete deck. The equations of motion of the vehicles are solved by Newmark ${\beta}$ method and the equations of the motion of the bridges are solved by mode-superposition procedures. The validity of the proposed procedure is demonstrated by comparing the results with the experimental data reported by the AASHO Road Test. The comparison shows that the agreement between experiment and theory is quite satisfactory.

  • PDF

Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor (가압중수형 원자로의 중성자 감속재 순환 유동가시화와 삼차원 전산해석)

  • Eom, Tae-Kwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • The heavy moderator acts as the ultimate heat-sink in an operating CANDU reactor. HUKINS has been developed to investigate moderator flow patterns. HUKINS consists of a 38.4-mm-thick cylindrical shell with a 0.95 m inner diameter and 88 sus-tubes that produce a total heat of 10 kW. A chemical visualization method was selected to estimate the occurrence of typical moderator flow patterns. Momentum-dominated flow, mixed flow, and buoyancy-dominated flow are detected under conditions of a heat load of 7.7 kW and input mass flow rates of 4, 7, and 11 L/min. The experimental results are similar to the results of a CFD simulation that consisted of approximately 1.9 million grids and was conducted using the k-${\varepsilon}$ turbulence model. Therefore, both the present experiments and simulations using HUKINS, a 1/8-scale model, represent all three important flow patterns expected in the real CANDU6 reference reactor. Thus, it has been demonstrated that HUKINS could be useful in the study of CANDU6 moderator circulation.