DOI QR코드

DOI QR Code

Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor

가압중수형 원자로의 중성자 감속재 순환 유동가시화와 삼차원 전산해석

  • Eom, Tae-Kwang (Dept. of Mechanical Control Engineering, Handong Global Univ.) ;
  • Lee, Jae-Young (Dept. of Mechanical Control Engineering, Handong Global Univ.)
  • 엄태광 (한동대학교 기계제어공학부) ;
  • 이재영 (한동대학교 기계제어공학부)
  • Received : 2011.08.16
  • Accepted : 2011.11.17
  • Published : 2012.02.01

Abstract

The heavy moderator acts as the ultimate heat-sink in an operating CANDU reactor. HUKINS has been developed to investigate moderator flow patterns. HUKINS consists of a 38.4-mm-thick cylindrical shell with a 0.95 m inner diameter and 88 sus-tubes that produce a total heat of 10 kW. A chemical visualization method was selected to estimate the occurrence of typical moderator flow patterns. Momentum-dominated flow, mixed flow, and buoyancy-dominated flow are detected under conditions of a heat load of 7.7 kW and input mass flow rates of 4, 7, and 11 L/min. The experimental results are similar to the results of a CFD simulation that consisted of approximately 1.9 million grids and was conducted using the k-${\varepsilon}$ turbulence model. Therefore, both the present experiments and simulations using HUKINS, a 1/8-scale model, represent all three important flow patterns expected in the real CANDU6 reference reactor. Thus, it has been demonstrated that HUKINS could be useful in the study of CANDU6 moderator circulation.

현 운행중인 중수로의 안전장치인 감속재는 원전사고시 최종 열침원의 역할을 감당한다. 감속재 연구 수행을 위해 CANDU6 의 축소화 모델인 HUKINS 는 최대출력 10kW 로, 칼란드리아 직경은 원모델의 1/8 에 해당하는 0.95m 이며 축방향 길이가 38.4mm 의 열원 88 개가 삽입되어 있다. HUKINS 내 감속재 유동패턴의 발생 여부를 판단하고자 화학처리기법을 활용하였고 그 결과 출력파워 약 7.7kW 에서 각입력유량을 4,7,11L/min 으로 유입시 감속재의 유동패턴이 부력기조유동, 혼합양상유동, 모멘텀 기조유동의 양상을 나타났다. 3 가지 유동패턴에 대해 육면체 격자를 기본으로 구성된 약 190 만개의 격자수 내에서 난류모델 $k{\varepsilon}$의 예측결과와 실험결과간에 유사성을 보임으로써 HUKINS 가 CANDU6 감속재 유동의 실험적 연구에 사용 가능함을 입증했다.

Keywords

References

  1. Koroyannakis, D., Hepworth, R.D. and Hendrie, G., 1983, "An Experimental Study of Combined Natural and Forced Convection Flow in a Cylindrical Tank," TDVI-382, AECL.
  2. Fortman, R.A. and Hadaller, G.I., 1990, "Moderator Temperature Distribution Experiments, Modified Inlet Port Tests: Results and Comparison," COG R&D Commercial, Nov.
  3. Hadaller, G. I. and Fortman, R. A., 1990, "Moderator Temperature Distribution Experiments, Phase 1: Unobstructed and Obstructed; Adiabatic and Diabatic with Resistance Heating," COG R&D Commercial, Mach.
  4. Hadaller, G. I. and Fortman, R. A., 1990, "Moderator Temperature Distribution Experiments, Phase 2: Obstructed Diabatic Tests with Electrolytic and Resistance Heating," COG R&D Commercial, June.
  5. Khartabil, H.F., Inch, W.W., Szymanski, J., Novog, D., Tavasoli, V. and Mackinon, J., 2002. "Three dimensional moderator circulation experimental program for validation of CFD code MODTURC_CLAS," In 21st CNS Nuclear Simulation Symposium, Ottawa, Canada.
  6. Lee, J.Y., Kim, M.W. and Kim, N.S., 2006, "Design of the 1/8 Scaled HUKINS Based on the Scaling Laws for the Experimental Investigation of Thermal-Hydraulic Effect of CANDU-6 Moderator," Trans. Of the KSME B, Vol. 30, No. 9, pp. 825-833.
  7. Yoon, C., Rhee, B.W. and Min, B.J., 2002, "Validation of a CFD Analysis Model for Predicting CANDU-6 Moderator Temperature Against SPEL Experiments," Proceedings of ICONE10, April 14-18, Virginia, USA.
  8. Kim, M., Yu, S.-O. and Kim, H.-J., 2006, "Analyses on Fluid Flow and Heat Transfer Inside Calandria vessel of CANDU-6 using CFD," Nuclear Engineering and Design 236, pp. 1155-1164. https://doi.org/10.1016/j.nucengdes.2005.10.018

Cited by

  1. Numerical Analysis of Internal Flow Distribution in Scale-Down APR+ vol.37, pp.9, 2013, https://doi.org/10.3795/KSME-B.2013.37.9.855