• Title/Summary/Keyword: SHEAR STRENGTH

Search Result 5,534, Processing Time 0.033 seconds

Calculation of Shear Strength of Rock Slope Using Deep Neural Network (심층인공신경망을 이용한 암반사면의 전단강도 산정)

  • Lee, Ja-Kyung;Choi, Ju-Sung;Kim, Tae-Hyung;Geem, Zong Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2022
  • Shear strength is the most important indicator in the evaluation of rock slope stability. It is generally estimated by comparing the results of existing literature data, back analysis, experiments and etc. There are additional variables related to the state of discontinuity to consider in the shear strength of the rock slope. It is difficult to determine whether these variables exist through drilling, and it is also difficult to find an exact relationship with shear strength. In this study, the data calculated through back analysis were used. The relationship between previously considered variables was applied to deep learning and the possibility for estimating shear strength of rock slope was explored. For comparison, an existing simple linear regression model and a deep learning algorithm, a deep neural network(DNN) model, were used. Although each analysis model derived similar prediction results, the explanatory power of DNN was improved with a small differences.

Effect of Moisture Absorption on the Shear Strength of Fiber-reinforced Composites (섬유강화 복합재료의 전단강도에 미치는 흡습의 영향)

  • Kim, Yun-Hae;Kim, Kook-Jin;Han, Joong-Won;Jo, Young-Dae;Bae, Sung-Youl;Moon, Kyoung-Man;Kim, Dong-Hun
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Composite materials are currently used in aero-space industry, sport and leisure industry but it has many problems such as mechanical properties deterioration by moisture absorption. In this study, we appraised interlaminar shear strength with specimen that immersed/ immersed-dried in water environment(distilled/sea) during $100{\sim}200$days. In the result, properties degradation of resin part and silan part by moisture absorption is judged early on main cause of interlaminar shear strength, and later destruction of mechanical bonding between silan part and fiber by moisture absorption is Judged later main cause of interlaminar shear strength. In conclusion, the recovery of interlaminar shear strength is judged to difficult due to interfacial destruction by moisture when pass over irreversible by moisture in composite material.

A Study on Improvement of Marine Clay through the Leaching Effect of Electrolyte Reaction in Electrode (전극의 전기분해 용출을 통한 해성점토의 개량에 관한 연구)

  • Han, Sang-Jae;Kim, Soo-Sam;Kim, Jong-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.89-98
    • /
    • 2006
  • In this study, the iron and aluminium electrode was put in marine clay which was taken from south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitation which was developed by electrode decomposition. For raising the cementation rate and reducing treatment time, high electric current( 2.5A) was applied in each electrode at semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. The iron electrode decomposition test results show that the water content adjacent to anode section decreased in 35% and increased in 13% at cathode section. The measured shear strength however, was increased considerably comparing to initial shear strength because of cementation effect between iron ions and soil particles. In case of aluminium electrode decomposition test, the distribution of measured shear strength and degree of improvement were more homogeneous than iron electrode decomposition test.

Shear Strength Model for Slab-Column Connections (슬래브-기둥 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun;Kim, Hye-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.585-593
    • /
    • 2010
  • On the basis of the strain-based shear strength model developed in the previous study, a strength model was developed to predict the direct punching shear capacity and unbalanced moment-carrying capacity of interior and exterior slab-column connections. Since the connections are severely damaged by flexural cracking, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the compressive normal stress developed by the flexural moment, the shear strength of the compression zone was derived on the basis of the material failure criteria of concrete subjected to multiple stresses. As a result, shear capacity of the critical section was defined according to the degree of flexural damage. Since the exterior slab-column connections have unsymmertical critical sections, the unbalanced moment-carrying capacity was defined according to the direction of unbalanced moment. The proposed strength model was applied to existing test specimens. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods.

Prediction of the Shear Strength of FRP Strengthened RC Beams (II) - Verification and parametric study - (FRP로 보강된 철근 콘크리트보의 전단강도 예측 (II) - 모델 검증 및 변수연구 -)

  • Sim Jong-Sung;Park Cheol-Woo;Moon Do-Young;Sim Jae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.353-359
    • /
    • 2005
  • To evaluate the proposed shear strength models developed in a companion paper, the shear strengths of test specimens strengthened with FRP were predicted by ACl specification, and elsewhere. The advantage and disadvantage of the models were investigated by the comparisons with the test results. The characteristics and limitations of the existing model were investigated with respect to FRP types, strengthening methods, shear span to depth ratio and effective strength of FRP. The results of this parametric study showed that the proposed shear strength model is more accurate than other models.

A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM (아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF

Friction Behavior at the Soil/Geosynthetic Interface in Respect of Efficiency (효율관점에서 흙/토목섬유 접촉면에서의 마찰특성)

  • Ahn, Hyun-Ho;Shim, Seong-Hyeon;Shim, Jai-Beom;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.65-72
    • /
    • 2007
  • Large-scale direct shear tests were conducted in order to investigate both the shear strength of soil itself and the friction behavior at the interface of soil/geosynthetics in respect of efficiency in this study. Sand, crushed stone and three types of geotextile (i.e. one woven geotextile and two nonwoven geotextiles) were used in the experimental program. The considered interfaces for the evaluation of interface shear strength in this study included sand/sand, crushed stone/crushed stone, sand/woven geotextile, crushed stone/woven geotextile, crushed stone/nonwoven geotextile-A and crushed stone/nonwoven geotextile-B. The results showed that the efficiency of 84% was obtained at the interface of sand/woven geotextile compared with the shear strength of sand itself (i.e. sand/sand interface). The efficiencies of 74%, 83% and 72% were obtained at the interface of crushed stone/nonwoven geotextile-A, crushed stone/nonwoven geotextile-B and crushed stone/woven geotextile, respectively compared with the shear strength of crushed stone itself (i.e. crushed stone/crushed stone interface).

Shear Strengthening Effect of RC Beams with FRP Sheets with respect to Shear Reinforcement Ration (전단보강비에 따른 FRP 쉬트의 전단보강성능)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.68-71
    • /
    • 2004
  • In the shear strengthening with FRP sheets, beams are wrapped around the webs and tension face of critical shear span by fiber sheets. The shear strength of RC beam strengthened with FRP sheets must be calculated based on the effective strain that can be developed in the FRP sheets at ultimate stage because the final failure modes of beams are governed by premature debonding of FRP sheet due to the limitation of bonded length by beam depth. An experimental study is carried out to evaluate the shear strengthening effect of AFRP or GFRP sheets with respect to shear reinforcement ratio of rebar. From the test results, it was found that the additional shear strength provided by GFRP or AFRP can be estimated by $p_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet $4,000m{\mu}$ proposed by ACI 440 committee.

  • PDF

A Study on the Shear Behavior of Reinforced Hooked Steel Fibrous Concrete Beam (훅트강섬유보강철근콘크리트보의 전단거동에 관한 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.224-228
    • /
    • 1995
  • Addition of hooked steel fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of reinforced hooked steel fibrous concrete beam(RHSFCB) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spacings of stirrups were taken into account as the main parameters. Some equations reported in the literatures, regarding the predictions of the shear strength of RHSFCB have been evaluated statistically based on the total number of 95 test results on RHSFCB failed in shear on shear-flexural mode.

  • PDF

Assessment of Code Requirments on Minimum Shear Reinforcement in High-Strength RC Beams (RC 보의 강도증진에 따른 최소전단철근 규준의 적합성 평가에 관한 연구)

  • 윤영수;원종필;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.289-294
    • /
    • 1996
  • This paper persents the assessment of the minimum shear reinforcement requirements in normal, medium and high-strength reinforced concrete beams. Twelve shear tests were conducted on full-scale beam specimens having design concrete compressive strengths of 35, 70 and 100 MPa. Different amounts of minimum shear reinfrocement were investigated, including the amounts required by Korean Concrete Standard (KCI88), JCI86, ACI89 (revised 1992) and CSA94 standard. The performance of the different amounts of shear reinforcement are discussed in terms of the shear capacity, the ductility and the crack control at service load levels. An assessment of code provisions for minimum shear reinforcememt, and the prediction and comparison of the ultimate shear capacity are also presented.

  • PDF