• Title/Summary/Keyword: SHEAR STRENGTH

Search Result 5,534, Processing Time 0.033 seconds

Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar

  • Thomoglou, Athanasia K.;Rousakis, Theodoros C.;Achillopoulou, Dimitra V.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.411-425
    • /
    • 2020
  • Unreinforced masonry (URM) walls present low shear strength and are prone to brittle failure when subjected to inplane seismic overloads. This paper discusses the shear strengthening of URM walls with Textile Reinforced Mortar (TRM) jackets. The available literature is thoroughly reviewed and an extended database is developed including available brick, concrete and stone URM walls retrofitted and subjected to shear tests to assess their strength. Further, the experimental results of the database are compared against the available shear strength design models from ACI 549.4R-13, CNR DT 215 2018, CNR DT 200 R1/2013, Eurocode 6 and Eurocode 8 guidelines as well as Triantafillou and Antonopoulos 2000, Triantafillou 1998, Triantafillou 2016. The performance of the available models is investigated and the prediction average absolute error (AAE) is as high as 40%. A new model is proposed that takes into account the additional contribution of the reinforcing mortar layer of the TRM jacket that is usually neglected. Further, the approach identifies the plethora of different block materials, joint mortars and TRM mortars and grids and introduces rational calibration of their variable contributions on the shear strength. The proposed model provides more accurate shear strength predictions than the existing models for all different types of the URM substrates, with a low AAE equal to 22.95%.

Effect of sandblasting and liner on shear bond strength of veneering ceramic to zirconia (샌드블라스팅 처리와 라이너가 지르코니아와 전장도재의 전단결합 강도에 미치는 영향)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.6-12
    • /
    • 2021
  • Purpose: This study aimed to compare the shear bond strength between zirconia cores and veneer ceramics as per the sand blasting and liner treatments. Methods: The following 4 groups of zirconia-veneering ceramic specimens were prepared: (1) Group I, untreated; (2) Group II, with 110 ㎛ aluminium oxide (Al2O3) sandblasting; (3) Group III, with liner (IPS e.max ZirLiner; Ivoclar Vivadent); and (4) Group IV, with 110 ㎛ Al2O3 sand blasting and liner. Surface roughness was measured for all the prepared specimens, and the surface morphology was observed using a scanning electron microscope. All the samples (n=40) were fixed with measuring jigs, and shear bond strengths were obtained using a universal testing machine with a crosshead speed of 0.5 mm/min. The shear bond strength data were analyzed using one-way analysis of variance and t-test. The post hoc comparison was performed using the Tukey's test (α=0.05). Results: A significant difference in the surface roughness was observed between the specimens of groups I and II (p<0.05). Surface treatment with liner and sandblasting showed higher shear bond strength between zirconia core and veneering ceramic (p<0.05). Conclusion: The sand blasting and liner treatment increased the shear bond strength between zirconia core and veneering ceramic.

A Study on the Change of Shear Strength of Coastal Muddy Sediment Due to the Mixing of Oyster shells with different Pyrolysis Temperature and Particle size (굴 패각의 소성온도 및 입경에 따른 연안 점토질 퇴적물의 전단강도 변화에 관한 연구)

  • Woo, Hee-Eun;Jeong, Ilwon;Lee, In-Cheol;Kim, Kyunghoi
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • In order to investigate change of shear strength of coastal muddy sediment by mixing pretreated oyster shells with different pyrolysis temperatures and particle sizes, a vane shear test was carried out. The shear strength of the sediment with oyster shells pyrolyzed at 800℃ was twice higher than that of the control, with a maximum shear strength of ca. 0.2 kPa. The Ca2+ concentration in the pore water was the highest at sediment with oyster shells pyrolyzed at 800℃ with a concentration of ca. 790 mg/L. From the above results, it is concluded that the application of the oyster shells pyrolyzed at 800℃ can affect the increase in shear strength of coastal sediments through the aggregation of clay particles and pozzolanic reactions with sediments.

Prediction of ultimate shear strength and failure modes of R/C ledge beams using machine learning framework

  • Ahmed M. Yousef;Karim Abd El-Hady;Mohamed E. El-Madawy
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.337-357
    • /
    • 2022
  • The objective of this study is to present a data-driven machine learning (ML) framework for predicting ultimate shear strength and failure modes of reinforced concrete ledge beams. Experimental tests were collected on these beams with different loading, geometric and material properties. The database was analyzed using different ML algorithms including decision trees, discriminant analysis, support vector machine, logistic regression, nearest neighbors, naïve bayes, ensemble and artificial neural networks to identify the governing and critical parameters of reinforced concrete ledge beams. The results showed that ML framework can effectively identify the failure mode of these beams either web shear failure, flexural failure or ledge failure. ML framework can also derive equations for predicting the ultimate shear strength for each failure mode. A comparison of the ultimate shear strength of ledge failure was conducted between the experimental results and the results from the proposed equations and the design equations used by international codes. These comparisons indicated that the proposed ML equations predict the ultimate shear strength of reinforced concrete ledge beams better than the design equations of AASHTO LRFD-2020 or PCI-2020.

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups

  • Tran, Viet-Linh;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.691-705
    • /
    • 2022
  • Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.

A Study on the Block Shear Strength according to the Layer Composition of and Adhesive Type of Ply-Lam CLT (Ply-Lam CLT의 층재 구성 및 접착제 종류에 따른 블록전단강도에 관한 연구)

  • CHOI, Gyu Woong;YANG, Seung Min;LEE, Hyun Jae;KIM, Jun Ho;CHOI, Kwang Hyeon;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.791-806
    • /
    • 2020
  • In this study, a block shear strength test was conducted to compare and analyze the strength and failure mode on the glued laminated timber, CLT, and Ply-lam CLT, which are mainly used for the construction of wood construction as engineering wood. Through this, the Ply-lam CLT manufacturing conditions for optimum production, such as the type of lamina, plywood, adhesive, and layer composition, were investigated. The results are as follow. Through block shear strength test, it showed high strength in the order of glued laminated timber, Ply-lam CLT and CLT. In particular, the shear strength of Ply-lam CLT, which is made of a composite structure of larch plywood and larch lamina, passed 7.1 N/㎟, which is a Korean industrial standards for block shear strength of structural glued laminated timber. In addition, in this study, there was no different in shear strength according to the adhesive type used for glulam, CLT, and Ply-lam CLT adhesion. However, in the case of Ply-lam CLT, the difference in shear strength of Ply-lam CLT was shown according to the type of lamina and plywood. The results showed high strength in the order of Larix kaempferi > Mixed light hardwood ≒ Pinus densiflora, sieb, et, Zucc plywood. The optimal configuration of Ply-lam CLT is when larch plywood and larch lamina are used, and it is decided that the adhesive can be used by selecting PRF and PUR according to the application. The results of block shear strength failure mode by type of wood based materials were analyzed. The failure mode showed shear parallel-to-grain for glulam, rolling shear for CLT, and shear parallel-to-grain and rolling for ply-lam CLT. This is closely related to shear strength results and is decided to indicate higher shear strength in Ply-lam CLT than in CLT due to rolling shear.

Seismic behavior of SFRC shear wall with CFST columns

  • Gao, Dan-Ying;You, Pei-Bo;Zhang, Li-Juan;Yan, Huan-Huan
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.527-539
    • /
    • 2018
  • The use of reinforced concrete (RC) shear wall with concrete filled steel tube (CFST) columns and steel fiber reinforced concrete (SFRC) shear wall has aroused widespread attention in recent years. A new shear wall, named SFRC shear wall with CFST columns, is proposed in this paper, which makes use of CFST column and SFRC shear wall. Six SFRC shear wall with CFST columns specimens were tested under cyclic loading. The effects of test parameters including steel fiber volume fraction and concrete strength on the failure mode, strength, ductility, rigidity and dissipated energy of shear wall specimens were investigated. The results showed that all tested shear wall specimens exhibited a distinct shear failure mode. Steel fibers could effectively control the crack width and improve the distribution of cracks. The load carrying and energy dissipation capacities of specimens increased with the increase of steel fiber volume fraction and concrete strength, whilst the ductility of specimens increased with the increase of steel fiber volume fraction and the decrease of concrete strength.

Test on the anchoring components of steel shear keys in precast shear walls

  • Shen, Shao-Dong;Pan, Peng;Li, Wen-Feng;Miao, Qi-Song;Gong, Run-Hua
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Prefabricated reinforced-concrete shear walls are used extensively in building structures because they are convenient to construct and environmentally sustainable. To make large walls easier to transport, they are divided into smaller segments and then assembled at the construction site using a variety of connection methods. The present paper proposes a precast shear wall assembled using steel shear keys, wherein the shear keys are fixed on the embedded steel plates of adjacent wall segments by combined plug and fillet welding. The anchoring strength of shear keys is known to affect the mechanical properties of the wall segments. Loading tests were therefore performed to observe the behavior of precast shear wall specimens with different anchoring components for shear keys. The specimen with insufficient strength of anchoring components was found to have reduced stiffness and lateral resistance. Conversely, an extremely high anchoring strength led to a short-column effect at the base of the wall segments and low deformation ability. Finally, for practical engineering purposes, a design approach involving the safety coefficient of anchoring components for steel shear keys is suggested.

Comparison and prediction of seismic performance for shear walls composed with fiber reinforced concrete

  • Zhang, Hongmei;Chen, Zhiyuan
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2021
  • Concrete cracking due to brittle tension strength significantly prevents fully utilization of the materials for "flexural-shear failure" type shear walls. Theoretical and experimental studies applying fiber reinforced concrete (FRC) have achieved fruitful results in improving the seismic performance of "flexural-shear failure" reinforced concrete shear walls. To come to an understanding of an optimal design strategy and find common performance prediction method for design methodology in terms to FRC shear walls, seismic performance on shear walls with PVA and steel FRC at edge columns and plastic region are compared in this study. The seismic behavior including damage mode, lateral bearing capacity, deformation capacity, and energy dissipation capacity are analyzed on different fiber reinforcing strategies. The experimental comparison realized that the lateral strength and deformation capacity are significantly improved for the shear walls with PVA and steel FRC in the plastic region and PVA FRC in the edge columns; PVA FRC improves both in tensile crack prevention and shear tolerance while steel FRC shows enhancement mainly in shear resistance. Moreover, the tensile strength of the FRC are suggested to be considered, and the steel bars in the tension edge reaches the ultimate strength for the confinement of the FRC in the yield and maximum lateral bearing capacity prediction comparing with the model specified in provisions.