머신러닝을 이용한 텍스트 기반 어류 질병 분류에서 머신러닝 모델의 입력 파라미터가 너무 많은 문제가 존재하지만, 성능의 문제로 임의로 입력 파라미터를 줄일 수 없다. 본 논문에서는 이 문제를 해결하고자 SHAP 분석 기법을 활용해 넙치 질병 분류에 특화된 입력 파라미터 최적화 방안을 제시한다. 제안한 방법은 SHAP 분석 기법을 적용하여 넙치 질병 문진표에서 추출한 질병 정보의 데이터 전처리와 AutoML을 활용한 머신러닝 모델 평가 과정을 포함한다. 이를 통해 AutoML의 입력 파라미터의 성능을 평가하고, 최적의 입력 파라미터 조합을 도출한다. 본 연구에서 제안 방법은 필요한 입력 파라미터 수를 감소시키면서도 기존의 성능을 유지할 수 있을 것으로 기대되며, 이는 텍스트 기반 넙치 질병 분류의 효율성 및 실용성을 높이는 데 기여할 것이다.
본 연구는 사범대 과학교육전공 재학생의 전공만족도와 학업만족도에 영향을 주는 요인을 머신러닝 모델인 랜덤 포레스트와 그래디언트 부스팅 모델과 SHAP 기법을 활용하여 탐색했다. 연구 결과, 그래디언트 부스팅 모델의 성능이 랜덤 포레스트보다 우수한 것으로 드러났으나 그 차이는 크지 않았다. 전공만족도에 영향을 주는 요인으로는 '본인 전공 교과에 해당하는 고교시절 과학교사 만족도', '교직 동기', '나이' 등이 있으며, 학업만족도는 '나이', '성별', '내신 과학 전문교과 이수여부'의 영향을 크게 받는 것으로 드러났다. SHAP value를 활용하여 변인의 영향력을 밝힐 수 있었고, 그 결과가 집단 전체에 대한 것과 개별적 분석으로 각각 도출이 가능했고, 서로 보완적 결과가 도출이 가능함을 확인하였다. 연구 결과를 바탕으로 과학교육과 재학생의 전공 및 학업 만족도를 지원하기 위한 방안을 제안하였다.
이동성을 갖춘 전자 장비에 에너지원을 공급하는 리튬 이온 배터리를 안전하게 운영하기 위해서는 배터리의 잔존 수명을 정확히 예측하는 것이 중요하다. 최근, 기계학습 기술의 발달로, 인공지능 기반의 배터리 잔존 수명 예측 모델이 활발히 연구되고 있다. 하지만, 기존 모델들은 모델 내부에서 일어나는 추론 과정을 알 수 없어 기계학습을 통해 예측된 값을 완전히 신뢰하고 사용하는 데 제약이 있었다. 이를 해결하기 위해 여러 설명가능한 인공지능 기법이 제안되었지만, 이러한 기법들은 단순히 결과를 그래프 형태로 시각화하였기에 사용자가 직접 그래프를 분석해야 했다. 이에 본 논문에서는 거대언어모델에 기반한 SHAP 분석을 이용하여 예측 모델의 추론 과정을 텍스트 형태로 해석하는 설명가능한 리튬 이온 배터리 잔존 수명 예측 기법을 제안한다. 공개 리튬 이온 배터리 데이터셋을 이용한 실험 결과, 거대언어모델 기반 SHAP 분석을 통해 모델의 예측 근거를 텍스트 형태로 구체화하여 이해할 수 있었다.
데이터가 빠른 속도로 증가하고 있는 가운데 가능한 최고의 정확도를 달성하기 위해 모든 종류의 복잡한 앙상블 및 딥 러닝 알고리즘이 사용되고 있다. 그렇지만, 이러한 모델이 알 수 없는 데이터를 예측/분류/인식/추적하는 방법과 관련하여 예측, 분류, 인식, 추적이 항상 신뢰할 수 있는 것은 아니다. 데이터 부족, 불균형 데이터 세트, 편향된 데이터 세트 등과 같은 다양한 이유가 학습 모델에 의해 포착되는 결정에 영향을 미칠 수 있다. 이와 관련하여 현재 모델의 설명 가능성에 관한 연구가 관심을 끌고 있다. 현재 설명 가능성 기법과 관련하여 LIME과 SHAP가 보편적으로 사용되고 있지만, 출력 결과들은 다소 상이한 측면을 나타내고 있다. 이에 본 연구에서는 LIME과 SHAP을 결합하는 방식을 소개하고, 데모와 관련해서 IEEE CIS 데이터 세트에서 거래를 사기로 분류할 때 LightGBM 및 Keras 모델이 내린 결정에 대한 설명 가능성을 분석한다.
International journal of advanced smart convergence
/
제12권1호
/
pp.53-58
/
2023
With the fast development of artificial intelligence day by day, users are demanding explanations about the results of algorithms and want to know what parameters influence the results. In this paper, we propose a model for bankruptcy prediction with interpretability using the SHAP framework. SHAP (SHAPley Additive exPlanations) is framework that gives a visualized result that can be used for explanation and interpretation of machine learning models. As a result, we can describe which features are important for the result of our deep learning model. SHAP framework Force plot result gives us top features which are mainly reflecting overall model score. Even though Fully Connected Neural Networks are a "black box" model, Shapley values help us to alleviate the "black box" problem. FCNNs perform well with complex dataset with more than 60 financial ratios. Combined with SHAP framework, we create an effective model with understandable interpretation. Bankruptcy is a rare event, then we avoid imbalanced dataset problem with the help of SMOTE. SMOTE is one of the oversampling technique that resulting synthetic samples are generated for the minority class. It uses K-nearest neighbors algorithm for line connecting method in order to producing examples. We expect our model results assist financial analysts who are interested in forecasting bankruptcy prediction of companies in detail.
산업 분야를 막론하고 머신러닝의 관심이 매우 높아지고 있으나, 머신러닝이 지닌 설명 불가능성은 여전히 문제로 남아있어 적극적인 업무 적용에 어려움이 있다. 본고에서는 증권사 금융 고객을 대상으로 이탈예측 모델 개발 사례를 소개하고 SHAP Value 기법을 사용하여 설명 가능한 머신러닝 모델 개발 시도와 해석 가능성 도출에 대한 연구 결과를 소개한다. 총 6가지 고객이탈 모델을 비교 분석하였으며, SHAP Value와 고객의 자산 변화에 따른 유형 분류 및 데이터 분석을 통해 고객 이탈 원인을 추론한다. 본 연구 결과를 토대로, 향후 마케팅 담당자의 실제 고객 마케팅 수행에 있어 원인 추론이 가능한 이탈 예측 결괏값을 사용하고 고객별 마케팅 여부를 점검하는 등의 종합적 판단 지표로 활용할 수 있을 것으로 판단된다.
인간의 산업 활동으로 인하여 동물들의 생존이 위협받으면서, 동물의 서식 분포를 효과적으로 파악할 수 있는 자동 야생동물 모니터링 기술의 필요성이 점점 더 커지고 있다. 그중에서도 동물 소리 분류 기술은 시각적으로 식별이 어려운 동물에게도 효과적으로 적용할 수 있는 장점으로 인하여 널리 사용되고 있다. 최근 심층학습 기반의 분류 모델들이 좋은 판별 성능을 보여주고 있어 동물 소리 분류에 많이 사용되고 있지만, 희귀종과 같이 개체 수가 적어 데이터가 부족한 경우에는 학습이 제대로 이루어지지 않을 수 있다. 또한, 이러한 모델들은 모델 내부에서 일어나는 추론 과정을 알 수 없어 결과를 완전히 신뢰하고 사용하는 데 제약이 따른다. 이에 본 논문에서는 전이 학습을 통해 데이터 부족 문제를 고려하고, SHAP을 이용하여 분류 모델의 추론 과정을 해석하는 설명가능한 동물 소리 분류 기법을 제안한다. 실험 결과, 제안하는 기법은 지도 학습을 한 경우보다 분류 성능이 향상됨을 확인하였으며, SHAP 분석을 통해 모델의 분류 근거를 이해할 수 있었다.
신용카드 부정 사용은 고객 및 기업의 신용과 재산에 막대한 손실을 미치고 있다. 이에 따라 금융사들은 이상금융거래탐지시스템을 도입하였으나 이상 거래 발생 여부를 지속적으로 모니터링하고 있기 때문에 시스템 유지에 많은 비용이 따른다. 따라서 본 논문에서는 컴퓨팅 리소스를 절약함과 동시에 성능 개선 효과를 보인 신용카드 이상 거래 탐지 알고리즘을 제안한다. CTGAN 을 활용하여 정상 거래와 이상 거래의 비율을 일부 완화하였고 XAI 기법인 SHAP 를 활용하여 유의미한 속성값을 선택하였다. 이것을 기반으로 LSTM Autoencoder를 사용하여 이상데이터를 탐지하였다. 그 결과 전통적인 비지도 학습 기법에 비해 제안 알고리즘이 우수한 성능을 보였음을 확인하였다.
Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.30-40
/
2024
Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.
In this study, we embark on a journey to uncover the essence of emotions by exploring the depths of transfer learning on three pre-trained transformer models. Our quest to classify five emotions culminates in discovering the KLUE (Korean Language Understanding Evaluation)-BERT (Bidirectional Encoder Representations from Transformers) model, which is the most exceptional among its peers. Our analysis of F1 scores attests to its superior learning and generalization abilities on the experimental data. To delve deeper into the mystery behind its success, we employ the powerful SHAP (Shapley Additive Explanations) method to unravel the intricacies of the KLUE-BERT model. The findings of our investigation are presented with a mesmerizing text plot visualization, which serves as a window into the model's soul. This approach enables us to grasp the impact of individual tokens on emotion classification and provides irrefutable, visually appealing evidence to support the predictions of the KLUE-BERT model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.