머신러닝을 이용한 텍스트 기반 어류 질병 분류에서 머신러닝 모델의 입력 파라미터가 너무 많은 문제가 존재하지만, 성능의 문제로 임의로 입력 파라미터를 줄일 수 없다. 본 논문에서는 이 문제를 해결하고자 SHAP 분석 기법을 활용해 넙치 질병 분류에 특화된 입력 파라미터 최적화 방안을 제시한다. 제안한 방법은 SHAP 분석 기법을 적용하여 넙치 질병 문진표에서 추출한 질병 정보의 데이터 전처리와 AutoML을 활용한 머신러닝 모델 평가 과정을 포함한다. 이를 통해 AutoML의 입력 파라미터의 성능을 평가하고, 최적의 입력 파라미터 조합을 도출한다. 본 연구에서 제안 방법은 필요한 입력 파라미터 수를 감소시키면서도 기존의 성능을 유지할 수 있을 것으로 기대되며, 이는 텍스트 기반 넙치 질병 분류의 효율성 및 실용성을 높이는 데 기여할 것이다.
다양한 분야에서 인공지능을 활용한 사례가 증가하면서 침입탐지 분야 또한 다양한 이슈를 인공지능을 통해 해결하려는 시도가 증가하고 있다. 하지만, 머신러닝을 통한 예측된 결과에 관한 이유를 설명하거나 추적할 수 없는 블랙박스 기반이 대부분으로 이를 활용해야 하는 보안 전문가에게 어려움을 주고 있다. 이러한 문제를 해결하고자 다양한 분야에서 머신러닝의 결정을 해석하고 이해하는데 도움이 되는 설명 가능한 AI(XAI)에 대한 연구가 증가하고 있다. 이에 본 논문에서는 머신러닝 기반의 침입탐지 예측 결과에 대한 신뢰성을 강화하기 위한 설명 가능한 AI를 제안한다. 먼저, XGBoost를 통해 침입탐지 모델을 구현하고, SHAP을 활용하여 모델에 대한 설명을 구현한다. 그리고 기존의 피처 중요도와 SHAP을 활용한 결과를 비교 분석하여 보안 전문가가 결정을 수행하는데 신뢰성을 제공한다. 본 실험을 위해 PKDD2007 데이터셋을 사용하였으며 기존의 피처 중요도와 SHAP Value에 대한 연관성을 분석하였으며, 이를 통해 SHAP 기반의 설명 가능한 AI가 보안 전문가들에게 침입탐지 모델의 예측 결과에 대한 신뢰성을 주는데 타당함을 검증하였다.
산업 분야를 막론하고 머신러닝의 관심이 매우 높아지고 있으나, 머신러닝이 지닌 설명 불가능성은 여전히 문제로 남아있어 적극적인 업무 적용에 어려움이 있다. 본고에서는 증권사 금융 고객을 대상으로 이탈예측 모델 개발 사례를 소개하고 SHAP Value 기법을 사용하여 설명 가능한 머신러닝 모델 개발 시도와 해석 가능성 도출에 대한 연구 결과를 소개한다. 총 6가지 고객이탈 모델을 비교 분석하였으며, SHAP Value와 고객의 자산 변화에 따른 유형 분류 및 데이터 분석을 통해 고객 이탈 원인을 추론한다. 본 연구 결과를 토대로, 향후 마케팅 담당자의 실제 고객 마케팅 수행에 있어 원인 추론이 가능한 이탈 예측 결괏값을 사용하고 고객별 마케팅 여부를 점검하는 등의 종합적 판단 지표로 활용할 수 있을 것으로 판단된다.
본 연구는 SHAP(SHapley Additive exPlanations)을 활용하여 신용카드 사용자의 연체 가능성을 예측하는 기계학습 모델의 해석 가능성을 강화하는 방법을 제안한다. 대규모 신용카드 데이터를 분석하여, 고객의 나이, 성별, 결혼 상태, 결제 이력 등이 연체 발생에 미치는 영향을 명확히 하는 것을 목표로 한다. 본 연구를 토대로 금융기관은 더 정확한 위험 관리를 수행하고, 고객에게 맞춤형 서비스를 제공할 수 있는 기반을 마련할 수 있다.
본 연구는 사범대 과학교육전공 재학생의 전공만족도와 학업만족도에 영향을 주는 요인을 머신러닝 모델인 랜덤 포레스트와 그래디언트 부스팅 모델과 SHAP 기법을 활용하여 탐색했다. 연구 결과, 그래디언트 부스팅 모델의 성능이 랜덤 포레스트보다 우수한 것으로 드러났으나 그 차이는 크지 않았다. 전공만족도에 영향을 주는 요인으로는 '본인 전공 교과에 해당하는 고교시절 과학교사 만족도', '교직 동기', '나이' 등이 있으며, 학업만족도는 '나이', '성별', '내신 과학 전문교과 이수여부'의 영향을 크게 받는 것으로 드러났다. SHAP value를 활용하여 변인의 영향력을 밝힐 수 있었고, 그 결과가 집단 전체에 대한 것과 개별적 분석으로 각각 도출이 가능했고, 서로 보완적 결과가 도출이 가능함을 확인하였다. 연구 결과를 바탕으로 과학교육과 재학생의 전공 및 학업 만족도를 지원하기 위한 방안을 제안하였다.
데이터가 빠른 속도로 증가하고 있는 가운데 가능한 최고의 정확도를 달성하기 위해 모든 종류의 복잡한 앙상블 및 딥 러닝 알고리즘이 사용되고 있다. 그렇지만, 이러한 모델이 알 수 없는 데이터를 예측/분류/인식/추적하는 방법과 관련하여 예측, 분류, 인식, 추적이 항상 신뢰할 수 있는 것은 아니다. 데이터 부족, 불균형 데이터 세트, 편향된 데이터 세트 등과 같은 다양한 이유가 학습 모델에 의해 포착되는 결정에 영향을 미칠 수 있다. 이와 관련하여 현재 모델의 설명 가능성에 관한 연구가 관심을 끌고 있다. 현재 설명 가능성 기법과 관련하여 LIME과 SHAP가 보편적으로 사용되고 있지만, 출력 결과들은 다소 상이한 측면을 나타내고 있다. 이에 본 연구에서는 LIME과 SHAP을 결합하는 방식을 소개하고, 데모와 관련해서 IEEE CIS 데이터 세트에서 거래를 사기로 분류할 때 LightGBM 및 Keras 모델이 내린 결정에 대한 설명 가능성을 분석한다.
기업의 부실 예측 모델은 기업의 재무 상태를 객관적으로 모니터링하는 데 필수적인 도구 역할을 한다. 적시에 경고하고 대응 조치를 용이하게 하며 파산 위험을 완화하고 성과를 개선하기 위한 효과적인 관리 전략을 수립할 수 있도록 지원한다. 투자자와 금융 기관은 금융 손실을 최소화하기 위해 부실 예측 모델을 이용한다. 기업 부실 예측을 위한 인공지능(AI) 기술 활용에 대한 관심이 높아지면서 이 분야에 대한 광범위한 연구가 진행되고 있다. 해석 가능성과 신뢰성이 강조되며 기업 부실 예측에서 설명 가능한 AI 모델에 대한 수요가 증가하고 있다. 널리 채택된 SHAP(SHapley Additive exPlanations) 기법은 유망한 성능을 보여주었으나 변수 수에 따른 계산 비용, 처리 시간, 확장성 문제 등의 한계가 있다. 이 연구는 전체 데이터 세트를 사용하는 대신 부트스트랩 된 데이터 하위 집합에서 SHAP 값을 평균화하여 변수 수를 줄이는 새로운 변수 선택 접근법을 소개한다. 이 기술은 뛰어난 예측 성능을 유지하면서 계산 효율을 향상시키는 것을 목표로 한다. 해석 가능성이 높은 선택된 변수를 사용하여 랜덤 포레스트, XGBoost 및 C5.0 모델을 훈련하여 분류 결과를 얻고자 한다. 분류 결과는 고성능 모델 설계를 목표로 soft voting을 통해 생성된 앙상블 모델의 분류 정확성과 비교한다. 이 연구는 1,698개 한국 경공업 기업의 데이터를 활용하고 부트스트래핑을 사용하여 고유한 데이터 그룹을 생성한다. 로지스틱 회귀 분석은 각 데이터 그룹의 SHAP 값을 계산하는 데 사용되며, SHAP 값 평균은 최종 SHAP 값을 도출하기 위해 계산된다. 제안된 모델은 해석 가능성을 향상시키고 우수한 예측 성능을 달성하는 것을 목표로 한다.
인간의 산업 활동으로 인하여 동물들의 생존이 위협받으면서, 동물의 서식 분포를 효과적으로 파악할 수 있는 자동 야생동물 모니터링 기술의 필요성이 점점 더 커지고 있다. 그중에서도 동물 소리 분류 기술은 시각적으로 식별이 어려운 동물에게도 효과적으로 적용할 수 있는 장점으로 인하여 널리 사용되고 있다. 최근 심층학습 기반의 분류 모델들이 좋은 판별 성능을 보여주고 있어 동물 소리 분류에 많이 사용되고 있지만, 희귀종과 같이 개체 수가 적어 데이터가 부족한 경우에는 학습이 제대로 이루어지지 않을 수 있다. 또한, 이러한 모델들은 모델 내부에서 일어나는 추론 과정을 알 수 없어 결과를 완전히 신뢰하고 사용하는 데 제약이 따른다. 이에 본 논문에서는 전이 학습을 통해 데이터 부족 문제를 고려하고, SHAP을 이용하여 분류 모델의 추론 과정을 해석하는 설명가능한 동물 소리 분류 기법을 제안한다. 실험 결과, 제안하는 기법은 지도 학습을 한 경우보다 분류 성능이 향상됨을 확인하였으며, SHAP 분석을 통해 모델의 분류 근거를 이해할 수 있었다.
건설산업의 높은 재해율을 줄이고자, VR 기반 건설안전교육의 도입이 장려되고 있다. 그러나 학습자의 특성을 고려하지 않은 교육방식으로 인해, 학습자의 개인특성에 맞는 효과적인 교육을 수행하지 못하는 한계가 있다. 본 연구에서는, VR 기반 건설안전교육에서 학습성과에 영향을 미치는 개인특성을 분석하는 것으로 목표로 하였고, 이를 위해 머신러닝과 SHAP 기법을 활용하였다. SHAP 분석 결과, 연령이 학습성과에 가장 많은 영향을 미치는 것으로 나타났고, 경력이 가장 작은 영향을 미치는 것으로 나타났다. 또한, 연령은 학습성과와 음(-)의 상관관계를 보이고 있어, VR 기반 건설안전교육의 도입은 낮은 연령에게 더 효과적일 수 있는 것으로 나타났다. 반면, 학력, 자격, 경력은 양(+)의 상관관계를 보였다. 학력이 낮은 학습자에게 더욱 이해하기 쉬운 컨텐츠를 제공함으로써, 학습성과를 향상시킬 필요가 있다. 또한, 자격과 경력이 낮은 학습자의 특성은 학습성과에 영향을 거의 미치지 않으므로, 그 이외의 학습자 특성에 집중함으로써, 학습자 맞춤형 교육 컨텐츠를 제공할 수 있을 것으로 기대된다. 본 연구를 통해, 여러 개인특성이 학습성과에 서로 다른 영향을 미칠 수 있음을 확인했고, 이러한 결과를 활용함으로써, 건설근로자의 개인특성을 고려한 효과적인 안전교육의 기회를 제공할 수 있을 것으로 기대된다.
Purpose: The central aim of this study is to leverage machine learning techniques for the classification of Intrusion Detection System (IDS) data, with a specific focus on identifying the variables responsible for enhancing overall performance. Method: First, we classified 'R2L(Remote to Local)' and 'U2R (User to Root)' attacks in the NSL-KDD dataset, which are difficult to detect due to class imbalance, using seven machine learning models, including Logistic Regression (LR) and K-Nearest Neighbor (KNN). Next, we use the SHapley Additive exPlanation (SHAP) for two classification models that showed high performance, Random Forest (RF) and Light Gradient-Boosting Machine (LGBM), to check the importance of variables that affect classification for each model. Result: In the case of RF, the 'service' variable and in the case of LGBM, the 'dst_host_srv_count' variable were confirmed to be the most important variables. These pivotal variables serve as key factors capable of enhancing performance in the context of classification for each respective model. Conclusion: In conclusion, this paper successfully identifies the optimal models, RF and LGBM, for classifying 'R2L' and 'U2R' attacks, while elucidating the crucial variables associated with each selected model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.