• 제목/요약/키워드: SHAFT ANGLE

검색결과 246건 처리시간 0.024초

배관계 오리피스 하류에서 유동가속부식으로 인한 국소 유동 파라미터에 대한 조사 (Investigation of Local Flow Parameters Caused by Flow Acceleration Corrosion Downstream of an Orifice in a Piping System)

  • 김경훈;조연수;김형준
    • 설비공학논문집
    • /
    • 제25권7호
    • /
    • pp.377-385
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows : The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and incre.

회전기기 진동의 차수 추종을 위한 재합성 필터의 설계 (The Design of Reconstruction Filter for Order Tracking in Rotating Machinery)

  • 정승호;박영필
    • 소음진동
    • /
    • 제2권2호
    • /
    • pp.117-123
    • /
    • 1992
  • In the study, the design method of reconstruction filter is studied for synchronized sampling which is necessary for order tracking in rotating machinery. The original data sampled at constant intervals, using fixed anti- aliasing filters, is reconstructed by digital reconstruction filter and is resampled at new sampling times calculated by a suitable shaft angle encoder pulse arrival times in order to synchronize with shaft velocity. In addition to eliminating the tracking synthesizer and filters, this new method has no phase noise due to phase-locked loops.

  • PDF

직접 구동형 밸브 트레인 시스템의 태핏 회전에 관한 실험적 연구 (An Experimental Study on the Tappet Spin for a Direct Acting Valve Train System)

  • 조명래;김형준;문태선;한동철
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1179-1184
    • /
    • 2003
  • The technique for measuring the rotational speed of tappet in direct acting type valve train system has been developed. The optic signal monitoring system with laser and optic fiber was designed to follow the signal of tappet rotation. The system was based on ON/OFF signal generation from the additional encoder teeth under the tappet with optic fibers attached photo transistor. The data showed that tappet rotation was affected by offset, oil temperature and cam shaft operating speed. Also it was found that tappet rotation increases with oil temperature. Tappet spin was delayed 10∼s20$^{\circ}$ cam angle after valve opening. The instantaneous rotational speed of tappet was reciprocal to cam shaft speed and the tappet and the cam angle ratio was located in the range of 0.1∼0.3.

불꽃점화 반켈 로터리 기관의 성능 시뮬레이션 (A Performance Simulation for Spark Ignition Wankel Rotary Engine)

  • 채재우;이상만;전영남;김규정;정영식
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.80-89
    • /
    • 1993
  • Performance simulation for a Spark Ignition Wankel rotary Engine is presented in this paper. The volume of chamber at each eccentric shaft angle is evaluated by using geometric models of housing and rotor. A thermodynamic model which includes the first law of thermodynamics, combustion and convective heat transfer from chamber contents to surroundings is imployed. A thermochemical equilibrium model which considers 10 species(CO, $CO_2$, $O_2$, $H_2$, $H_2O$, OH, O, NO, $N_2$) in the burned gas region, is also employed. Four processes of gas exchange, compression, combustion and expansion are considered and the pressure, temperature and composition of chamber gas at each eccentric shaft angle in each process are computed in this performance simulation. This performance simulation must be useful for optimal design of Spark Ignition Wankel Rotray Engine with parametric study for various design parameters and operating conditions.

  • PDF

골프 클럽에 따른 타격자세의 변화 (Changes of Impact Variables by the Change of Golf Club Length)

  • 성낙준
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.181-189
    • /
    • 2005
  • To know the proper impact posture and changes for the various clubs, changes of impact variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed video cameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. Major findings of this study were as follows. 1. Lateral position of the head remained more right side of the target up to 3.5cm compared to the setup as the length of the club increased. 2. Left shoulder raised up to 5cm and right shoulder lowered up to 2.5cm compared to setup. The shoulder line opened slightly (maximum 11 degrees) to the target line. 3. Forward lean angle of the trunk decreased up to 4 degrees (more erected) compared to setup. 4. Side lean angle of the trunk increased compared to setup and increased up to 16 degrees as the club length increased. 5. The pelvis moved to the target line direction horizontally and opened up to 31 degrees. Right hip moves laterally to the grip position at the setup. 6. Flexion of the left leg maintained almost constantly but the right leg flexed up to 11 degrees compared to setup. 7. Left arm is straightened but the right arm flexed about 20degrees compared to straight. 8. Center of the shoulders were in front of the knees and toes of the feet. 9. Hands moved to the left (8.7cm), forward (5.7cm) and upward (11.6cm) compared to the setup. This is because of the rotation of pelvis and shoulders. 10. Shaft angle to the ground was smaller than the lie angle of the clubs but it increased close to the lie of the clubs at impact.

모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널베어링의 마모 해석 - Part II: 경사진 축을 지지하는 두 저어널베어링의 마모해석 (Wear Analysis of Journal Bearings Operating in a Shaft During Motoring Start-up and Coast-down Cycles - Part II: Wear Analysis of two Journal Bearings Supporting a Misaligned Shaft)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제33권4호
    • /
    • pp.168-186
    • /
    • 2017
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings during the start-up and coast-down cycles of a motoring stripped-down single cylinder engine operating with a tilted shaft. In order to decide whether the lubrication state of a journal bearing is in the mixed-elasto-hydrodynamic lubrication regime, we utilize lift-off speed and MOFT (most oil film thickness) under mixed-elasto-hydrodynamic lubrication regime at the corresponding aligned shaft. We formulate an equation for the modified film thickness in a misaligned journal bearing considering the additional wear volume described in Part I of this study. For this, we use the calculation results of the degree of misalignment and tilting angle obtained after finding the eccentricities of the two bearings supporting the crankshaft of a single cylinder engine. In this Part II, we calculate the wear of journal bearings using the fractional film defect coefficient, the asperity load sharing factor, and the modified specific wear rate for the application of mixed-elasto-hydrodynamic lubrication regime. We show that the accumulated wear volume after turning the ignition switch on and off once, increases to ${\sigma}=39{\mu}m$ and then decreases from ${\sigma}=39{\mu}m$ with increasing in surface roughness.

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.

파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산 (Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.

Operative Treatment with Intramedullary Fibular Strut Allograft for Osteoporotic Proximal Humerus Fracture

  • Chun, Yong-Min;Lee, Wonyong
    • Clinics in Shoulder and Elbow
    • /
    • 제20권2호
    • /
    • pp.95-99
    • /
    • 2017
  • Background: The purpose of this study was to investigate the clinical and radiological outcomes of locking plate fixation with fibular strut allograft to manage unstable osteoporotic proximal humerus fractures. Methods: We retrospectively reviewed 15 patients who underwent open reduction and locking plate fixation with fibular strut allograft for osteoporotic proximal humerus fracture between July 2011 and June 2015. For functional evaluation, we evaluated visual analogue scale (VAS) pain score, American Shoulder and Elbow Surgeons (ASES) score, University of California Los Angeles (UCLA) shoulder score, and active range of motion. For radiological evaluation, shoulder true anteroposterior (AP) and AP in $20^{\circ}$ external rotation, as well as the axillary view were taken at two weeks, six weeks, three months, six months, and one year. And the neck-shaft angle was measured on the AP view in $20^{\circ}$ external rotation view. Results: At the one-year follow-up, mean VAS pain score and all shoulder scores, including ASES score and UCLA shoulder score, exhibited satisfactory clinical outcomes. All patients obtained bone union between three and six months post-procedure. Moreover, the mean immediate postoperative neck-shaft angle was $138^{\circ}{\pm}4^{\circ}$, and at one-year follow-up, the neck shaft angle was $137^{\circ}{\pm}5^{\circ}$. There was no significant difference between the preoperative and postoperative values (p=0.105). Conclusions: For the unstable two-part and three-part osteoporotic proximal humerus fractures with medial calcar comminution, the use of fibular strut allograft with locking plate fixation was effective in maintaining the initial status of reduction and exhibiting the satisfactory functional and radiological outcomes.

소형 선박용 복합재료 축 설계를 위한 음력해석에 관한 연구 (A Study on the Stress Analysis for Design of Composite Material Shafts of Small Boats)

  • 김윤해;임철문;배창원;왕지석
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.308-313
    • /
    • 2002
  • It is known that the composite material shafts using on small boats have various advantages comparing to forged steel shafts, fur examples, specific strength, fatigue strength, corrosion, etc. The analysis of the stresses and strains in the composite material shafts made by filament winding method is presented in this paper. The classical laminated plate theory is applied on the patch cut from the composite material hollow shafts. It is verified that the composite material hollow shafts of diameter 40 mm is the most optimum when the ratio of the inner diameter to the outer is 0.4 and winding angle is 45$^{\circ}$. It is also proven that the shear strain does not change seriously between 30$^{\circ}$and 60$^{\circ}$of winding angles. It is dangerous when the winding angle is over 75$^{\circ}$because the values of shear strain and stress produced on the shaft are too high so it must be avoided to wind the filament by the angle over 75$^{\circ}$.