• 제목/요약/키워드: SH-SY5Y cell line

검색결과 45건 처리시간 0.024초

Identification of differentially expressed Genes by methyl mercury in neuroblastoma cell line using SSH

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Ryu, Jae-Chun
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.153-153
    • /
    • 2002
  • Methylmercury (MeHg), one of the heavy metal compound, can cause severe damage to the central nervous system in humans. Many reports have contributed MeHg poisoning to contaminated foods and release into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established.(omitted)

  • PDF

Differentially Expressed Genes by Methylmercury in Neuroblastoma cell line using suppression subtractive hybridization (SSH) and cDNA Microarray

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 춘계학술대회
    • /
    • pp.187-187
    • /
    • 2003
  • Methylmercury (MeHg), one of the heavy metal compounds, can cause severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. In this study, two methods, cDNA Microarray and SSH, were performed to assess the expression profile against MeHg and to identify differentially expressed genes by MeHg in neuroblastoma cell line. TwinChip Human-8K (Digital Genomics) was used with total RNA from SH-SY5Y (human neuroblastoma cell line) treated with solvent (DMSO) and 6.25 uM (IC50) MeHg. And we performed forward and reverse SSH method on mRNA derived from SH-SY5Y treated with DMSO and MeHg (6.25 uM). Differentially expressed cDNA clones were sequenced and were screened by dot blot and ribonuclease protection assay to confirm that individual clones indeed represent differentially expressed genes. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences may provide an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as environmental pollutants.

  • PDF

Alpha-lipoic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced cell injury by inhibiting autophagy and apoptosis

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Lim, HyangI;Park, Jong-Hyun;Yang, Kwang Yeol;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Lee, Dong-Seol;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.15-22
    • /
    • 2021
  • Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and Bcl-xL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.

키누레닌 대사산물에 의한 신경세포 손상에 대한 Magnolol의 보호효과에 대한 연구 (Magnolol Attenuates Neuronal Cell Death Induced by Kynurenine Metabolite)

  • 이창욱;이현정;김도희;장영미;이상형;정윤화;김대진;정윤희;김경용;김성수;이원복
    • 한국약용작물학회지
    • /
    • 제17권2호
    • /
    • pp.145-150
    • /
    • 2009
  • This study investigated the protective roles and mechanism of magnolol, from the stem bark of Magnolia officinalis against potential neurotoxin 3-hydroxykynurenine (3-HK)-induced neuronal cell death. For the evaluation of protective role of magnolol, we examined cell viability, apoptotic nuclei, change of mitochondrial membrane potential and caspase activity in human neuroblastoma SH-SY5Y cells. It was found that 3-HK induces neuronal cell death in the human neuroblastoma SH-SY5Y cell line. The reduced cell viability produced characteristic features such as cell shrinkages, plasma membrane blebbing, chromatin condensation, and nuclear fragmentation. The cells treated with 3-HK showed an increase in the concentration of reactive oxygen species (ROS) as well as in caspase activity. In addition, both are involved in the 3-HK-induced apoptosis. Magnolol attenuated the cell viability reduction by 3-HK in both a dose- and time-dependent manner. Optical microscopy showed that magnolol inhibited the cell morphological features in the 3-HK-treated cells. Furthermore, the increase in the ROS concentration and the caspase activities by 3-HK were also attenuated by magnolol. These results showed that magnolol has a protective effect on the 3-HK induced cell death by inhibiting ROS production and caspase activity.

L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells

  • Kim, Yerin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제14권3호
    • /
    • pp.188-202
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Brain aging is a major risk factor for severe neurodegenerative diseases. Conversely, L-histidine and L-carnosine are known to exhibit neuroprotective effects. The aim of this study was to examine the potential for L-histidine, L-carnosine, and their combination to mediate anti-brain aging effects in neuronal cells subjected to D-galactose-induced aging. MATERIALS/METHODS: The neuroprotective potential of L-histidine, L-carnosine, and their combination was examined in a retinoic acid-induced neuronal differentiated SH-SY5Y cell line exposed to D-galactose (200 mM) for 48 h. Neuronal cell proliferation, differentiation, and expression of anti-oxidant enzymes and apoptosis markers were subsequently evaluated. RESULTS: Treatment with L-histidine (1 mM), L-carnosine (10 mM), or both for 48 h efficiently improved the proliferation, neurogenesis, and senescence of D-galactose-treated SH-SY5Y cells. In addition, protein expression levels of both neuronal markers (β tubulin-III and neurofilament heavy protein) and anti-oxidant enzymes, glutathione peroxidase-1 and superoxide dismutase-1 were up-regulated. Conversely, protein expression levels of amyloid β (1-42) and cleaved caspase-3 were down-regulated. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-8, IL-1β, and tumor necrosis factor-α were also down-regulated. CONCLUSIONS: To the best of our knowledge, we provide the first evidence that L-histidine, L-carnosine, and their combination mediate anti-aging effects in a neuronal cell line subjected to D-galactose-induced aging. These results suggest the potential benefits of L-histidine and L-carnosine as anti-brain aging agents and they support further research of these amino acid molecules.

스트렙토조토신으로 유도된 신경세포사멸에서 비타민 C의 보호 기전 연구 (Study on the Protective Mechanism of Vitamin C in the SH-SY5Y Cell Death Induced by the Streptozotocin)

  • 이승희;한경훈;김현준;박광성;한성희;김정희;허재혁
    • 한국식품영양학회지
    • /
    • 제31권4호
    • /
    • pp.457-463
    • /
    • 2018
  • In this study, we analyzed the protective effects of the vitamin C in the streptozotocin (STZ)-induced apoptosis using the SH-SY5Y, a neuroblastoma cell line. The cells were pretreated with the vitamin C ($100{\mu}g$) for 30 min, followed by the 24-hr treatment with the 2.5-mM STZ. The cell-viability assay using the Cell Counting Kit (CCK)-8 revealed the cell-survival rate increased by 15% following the vitamin-C pretreatment compared to the STZ-only treatment. Moreover, we conducted the western-blot analysis to determine the protective effect of the vitamin C regarding the apoptosis. Compared to those in the STZ-only-treatment group, the p-ERK and Bcl-2 expressions increased in the vitamin-C-pretreatment group, whereas the p-JNK and Bax expressions decreased. The vitamin-C pretreatment increased the expression of the SOD-1, an antioxidant enzyme, by more than 30%, indicating its protective role in the STZ-induced oxidative stress. Also, we found both the intrinsic- and extrinsic-pathway mechanisms of the STZ-induced apoptosis. The results of this study $s{\mu}ggest$ vitamin C may help prevent the neurodegenerative diseases.

부정항암탕(扶正抗癌湯)의 사람 췌장암 세포주 PANC-1에 대한 항종양(抗腫瘍) 효과(效果) (Anti-cancer Effects of Bujeonghangamtang on Human Pancreatic Cancer Cell Line PANC-1)

  • 김훈;원진희;문구
    • 대한한의학방제학회지
    • /
    • 제15권1호
    • /
    • pp.213-228
    • /
    • 2007
  • Objectives : The purpose of this report was to investigate the chemotherapeutic effect of Bujeonghangamtang against cancer cells. Materials and Methods : Various cancer cell lines including PANC-1, C6 glioma, SH-SY5Y, HepG2, and MCF-7 cells, were used. Apoptosis was determined by DAPI nuclei staining and flow cytometry in PANC-1 cells treated with 1 mg/ml Bujeonghangamtang for 48 hr. Expression of cell cycle arrest mediators including, cdc2p34 and cyclin B1 proteins were measured by Western blot analysis. Mitochondrial membrane potential was measured by fluorescence staining with JC-1, rhodamine 123. Result : Bujeonghangamtang induced the apoptosis of PANC-1, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G0/G1 fraction of cell cycle increase. but not C6 glioma, SH-SY5Y, HepG2, and MCF-7 cells. PANC-1 cells were markedly sensitive to Bujeonghangamtang. Treatment with Bujeonghangamtang resulted in the decreased expression of cdc2p34 and cyclin B1. Treatment with Bujeonghangamtang also increased the ROS production and induced mitochondrial dysfunction. Conclusion : Bujeonghangamtang exerted cytotoxicity against human Pancreatic cancer cells via cell cycle arrest-mediated apoptotic signaling including ROS production and mitochondrial dysfunction. Our data suggest that Bujeonghangamtang may be an important modulator of chemosensitivity of cancer cells against anticancer chemotherapeutic agents.

  • PDF

Survival Association and Cell Cycle Effects of B7H3 in Neuroblastoma

  • Zhang, Haibo;Zhang, Jinsen;Li, Chunjie;Xu, Hao;Dong, Rui;Chen, Clark C.;Hua, Wei
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권6호
    • /
    • pp.707-716
    • /
    • 2020
  • Objective : The function of B7H3, a member of the B7 family of proteins, in neuroblastoma (NB) remains poorly characterized. Here we examine the expression pattern of B7H3 in clinical NB specimens and characterize the phenotype of B7H3 knock-down in NB cell line. Methods : Immunohistochemical (IHC) staining was carried out to assess the expression of B7H3 in clinical NB specimens. Survival association was analyzed using five Gene Expression Omnibus (GEO) datasets (GSE85047, GSE45480, GSE62564, GSE16476, GSE49710). Clonogenic survival and flow cytometry were performed after B7H3 knockdown to assess the cellular proliferation and cell survival in vitro. Impact of B7H3 silencing on NB growth was examined in vivo using the SH-SY5Y xenograft model. Results : On IHC staining, B7H3 was widely expressed in clinical NB specimens. Analysis of the transcriptional profiles of five GEO datasets clinically annotated NB specimens revealed that decreased B7H3 expression was associated with improved overall survival. B7H3 knockdown suppressed the proliferation of the SH-SY5Y NB model in vitro and in vivo. Cell cycle analysis revealed that B7H3 silencing induced G1/S arrest. This arrest was associated with the suppression of E2F1 expression and induction of Rb expression. Conclusion : Our results demonstrate that B7H3 expression correlate with clinical survival in NB patients. Preliminary studies suggest that B7H3 may mediate the G1/S transition.