• Title/Summary/Keyword: SGS model

Search Result 83, Processing Time 0.019 seconds

Analysis of a Roller Guide Container Stacking System Applicable to the Mobile Harbor (모바일 하버 컨테이너 적재 유도 시스템에서 롤러 가이드 적용 및 해석)

  • Oh, Tae-Oh;Park, Jung-Hong;Kim, Kwang-Hoon;Son, Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.620-626
    • /
    • 2011
  • The purpose of this study is to evaluate a simulation model of a stacking guidance system (SGS) with a roller guide applicable to the mobile harbor. The study used a small-scale model (1/20) made of wood with rollers in order to compare the dynamic analysis with experiment results. The law of similarity was applied for the validation of the scaled model. In order to construct a more realistic simulation model, the damping coefficient of the dynamic model was adjusted to 0.5 Ns/mm for the wood-to-wood contact condition based on the experimental results. Using this validated model, dynamic simulations were also carried out for containers of 20, 30, and 40 tons. The results showed that the reaction force of the roller guide was increased from 74.7 kN to 91.2 kN as the weight of container increased. For the design of a roller guide for SGS, the results obtained in this study can be used to reduce the reaction force by employing a rubber roller or a highly damped rotational joint.

Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim Chang-Seong;Kim Jong-Am;No O Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF

SGS: Splicing Graph Server

  • Bollina, Durgaprasad;Lee, Bernett T.K.;Ranganathan, Shoba
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.47-50
    • /
    • 2005
  • SGS (Splicing Graph Server) is as web application based on the MVC architecture with a Java platform. The specifications of the implemented design pattern are closely associated with the specific requirements of splicing graphs for analyzing alternative splice variants from a single gene. The paper presents the use of MVC architecture using JavaBeans as a model, with a JSP viewer and the servlet as the controller for this bioinformatics web application, with the open source apache/tomcat application server and a MySql database management system.

  • PDF

On the Large Eddy Simulation of High Prandtl Number Scalar Transport Using Dynamic Subgrid-Scale Model

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.173-182
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

Simulation of Turbulent Flow Over Square Cylinder Using Lattice Boltzmann Method (LBM을 이용한 사각형 실린더 주위의 난류유동해석)

  • Kim Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.438-445
    • /
    • 2006
  • We performed the simulation of the unsteady three dimensional flow over a square cylinder in a wind tunnel in moderate Reynolds number range, $100{\sim}2500$ by using LBM. SGS model was applied for the turbulent flow. Frist of all we compared LBM(Lattice Boltzmann Method) solution of Poiseuille flow applied Farout and bounce back boundary conditions with the analytical and FOAM solutions to verify the applicability of the boundary conditions. For LBM simulation the calculation domain was formed by structured grids and prescribed uniform velocity and density inlet and Farout boundary conditions were imposed on the in-out boundaries. Bounceback and wind tunnel boundary conditions were applied to the cylinder walls and the boundaries of calculation domain respectively. The maximum Strouhal number of the vortex shedding is 0.2025 at Re = 750. and the number maintains the constant value of 0.18 when Re>1000. We also predicted that the critical reynolds number of the turbulent flow is in the range of $250{\sim}500$.

Modification of SST Turbulence Model for Computation of Oscillating Airfoil Flows (진동하는 익형 주위의 유동장 해석을 위한 SST 난류 모델의 수정)

  • Lee Bo-sung;Lee Sangsan;Lee Dong Ho
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.44-51
    • /
    • 1999
  • A modified version of SST turbulence model is suggested to simulate unsteady separated flows over oscillating airfoils. The original SST model, which shows good performance in predicting various steady flows, often results in oscillatory behavior of aerodynamic loads in large separated flow regions. It is shown that this oscillatory behavior is due to the adoption of the absolute value of vorticity in generalizing the original model. As a remedy, a modification is made such that the vorticity in the original SST model is replaced by strain rate. The present model is verified for a mild separated airfoil flow at fixed angle of incidence and for unsteady flowfields about oscillating airfoils. The results are compared with BSL model and original SST model. It is illustrated that the present model gives a better agreement with the experimental results than other two models.

  • PDF

A Numerical Computation of Viscous Flow around a Wigley Hull For with Appendages (부가물이 부착된 Wigley선형 주위의 점성유동 해석)

  • Park, J.J.;Park, S.S.;Lee, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.39-47
    • /
    • 1997
  • In the present paper, viscous flow fields around a wigley hull with appendages are analysed to study interactions between the hull and appendages. Navier-Stokes and continuity equations are solved by a finite volume method in a body-fitted coordinate system which conforms three dimensional ship geometries with appendages. A Sub-Grid Scale(SGS) turbulent model is used for a calculation of high Reynolds number flow. Numerical computations has been done for a Wigley hull form at $Rn=1.0{\times}10^6$. The results show that the present approach can predict, at least in qualitative sense, the influence of the appendages upon the flow field around a ship.

  • PDF

Comparison of Algorithm & Turbulence Modelling for Calculation of Compressor Cascade Flows (압축기 익렬 유동해석을 위한 알고리즘과 난류 모델의 비교 연구)

  • 김석훈;이기수;최정열;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.59-69
    • /
    • 2000
  • A numerical analysis based on two-dimensional, incompressible and compressible Navier-Stokes equations was carried out for double circular arc compressor cascade and the results are compared with available experimental data. The incompressible code based on SIMPLE algorithm adopts pressure weighted method and hybrid scheme for the convective terms. The compressible code with preconditioning method involves a upwind-biased scheme for the convective terms and LU-SGS scheme for temporal integration. Several turbulence models are evaluated by computing the turbulent viscous flows; Baldwin-Lomax, standard $\kappa$ -$\varepsilon$, $\kappa$ -$\varepsilon$ Lam. Bremhorst, standard $\kappa$-$\omega$, $\kappa$ -$\omega$ SST model.

  • PDF

Computation of supersonic turbulent base flow using two-equation and Reynolds stress models (2-방정식 및 레이놀즈 응력 모형을 이용한 초음속 난류 기저유동의 수치적 계산)

  • Kim M. H.;Park S. O.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.9-17
    • /
    • 1997
  • The performance of several turbulence models in computing an axisymmetric supersonic base flow is investigated. A compressible Navier-Stokes code, which incorporates k-ε, k-ω model and Reynolds stress closure with three kinds of pressure-strain correlation model, has been developed using implicit LU-SGS algorithm with second-order upwind TVD scheme. Numerical computations have been carried out for Herrin and Dutton's base flow. It is observed that the two-equation models give large backward axial velocity approaching to the base and somewhat larger variation of base pressure distribution than the Reynolds stress model. It is also found that the Reynolds stress model with third order pressure-strain model in the anisotropy tensor predicts most accurate mean flow field.

  • PDF

Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation

  • Lu, C.L.;Li, Q.S.;Huang, S.H.;Tuan, Alex Y.;Zhi, L.H.;Su, Sheng-chung
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.313-350
    • /
    • 2016
  • Taipei 101 Tower, which has 101 stories with height of 508 m, is located in Taipei where typhoons and earthquakes commonly occur. It is currently the second tallest building in the world. Therefore, the dynamic performance of the super-tall building under strong wind actions requires particular attentions. In this study, Large Eddy Simulation (LES) integrated with a new inflow turbulence generator and a new sub-grid scale (SGS) model was conducted to simulate the wind loads on the super-tall building. Three-dimensional finite element model of Taipei 101 Tower was established and used to evaluate the wind-induced responses of the high-rise structure based on the simulated wind forces. The numerical results were found to be consistent with those measured from a vibration monitoring system installed in the building. Furthermore, the equivalent static wind loads on the building, which were computed by the time-domain and frequency-domain analysis, respectively, were in satisfactory agreement with available wind tunnel testing results. It has been demonstrated through the validation studies that the numerical framework presented in this paper, including the recommended SGS model, the inflow turbulence generation technique and associated numerical treatments, is a useful tool for evaluation of the wind loads and wind-induced responses of tall buildings.