• Title/Summary/Keyword: SF6 gas

Search Result 565, Processing Time 0.03 seconds

Ultra fast Marx Generator of N2, SF6, N2-SF6 Mixture Gas based on Research Output Characteristics (초고속 Marx Generator의 N2, SF6, N2-SF6 혼합가스에 따른 출력 특성 연구)

  • Doo, Jin-Suk;Han, Seung-Moon;Huh, Chang-Su;Choi, Jin-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1850-1855
    • /
    • 2010
  • The application field of the pulse power is very wide. Recently, Pulse power technologies take a large place in several applications. Then, many civil and military applications proceed. Marx generator is widely used in high voltage applications. Marx generator is widely used in high voltage applications, such as eletromagnetic wave and power lasers. This paper, we described about the high voltage pulse generator. A compact size high voltage pulse generator with nanosecnd rise time has been fabricated and investigated experimentally. The marx generator has 2 stages. Each stage was constructed one charging capacitor, two electrodes and one charging resistor. A inductance structure is used in order to improve the switching performances fo the whole generator. The experiments of rise time in pure gas and mixtures of gases were described. We tested the Marx generator at different insulation gas. the results show that the dielectric strength of the $N_2-SF_6$ mixture was significantly increased compared with pure nitrogen gas. The experimental results show that the rise time characteristics of the Marx generator can be controlled through varying insulation gas.

Lightning Impulse Breakdown Characteristic of Dry-Air/Silicone Rubber Hybrid Insulation in Rod-Plane Electrode

  • Kwon, Jung-Hun;Seo, Cheong-Won;Kim, Yu-Min;Lim, Kee-Joe
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1181-1187
    • /
    • 2015
  • Sulfur hexafluoride (SF6) gas is used widely in electric power equipment such as Gas Insulated Switchgear (GIS), Gas Insulation transmission Line (GIL), and Gas Circuit Breaker (GCB). But applications of SF6 should be restricted because SF6 gas is one of the greenhouse effect gases. To reduce use of SF6 gas, a study on eco-friendly alternative insulation medium is needed. In this paper, we investigated lightning impulse (LI) breakdown of dry-air which is attracting attention as an ecofriendly alternative gas and the LI breakdown of hybrid insulation combined with dry-air and solid insulation (Room-Temperature Vulcanizing Silicone Rubber-RTV SIR) and dry-air in inhomogeneous fields according to gap distance and pressure. The experiment results showed that the LI breakdown strength of hybrid insulation system was higher than that of dry-air insulation system. It was verified that the development of technology related to eco-friendly power apparatus compact such GIS, GCB and GIL can be used as basic research data.

Partial Discharge Characteristics on Protrusion Defects in SF6-N2 Mixture Gases (SF6-N2 혼합가스 중 돌출 결함의 부분방전 특성)

  • Jo, Hyang-Eun;Wang, Guoming;Kim, Sun-Jae;Park, Kyoung-Soo;Kil, and Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • Studies on a $SF_6$-mixture and -alternative gas has been in progress to reduce the use of $SF_6$ gas as an insulation material of GIS (gas insulated switchgears). In this paper, we dealt with PD (partial discharge) characteristics in pure $SF_6$ and $N_2$, and their mixtures on aspects of insulation design and risk assessment for GIS. A POC (protrusion on conductor) and a POE (protrusion on enclosure) as the major defects were fabricated to simulate PD. We analyzed the DIV (discharge inception voltage), DEV (discharge extinction voltage), pulse magnitude, counts and phase distribution of PD pulse in $SF_6-N_2$ mixtures ($SF_6$ 100%, $SF_6$ 80%-$N_2$ 20%, $SF_6$ 50%-$N_2$ 50%, $SF_6$ 20%-$N_2$ 80%, and $N_2$ 100%) according to the IEC60270. The DIV, DEV as well as magnitude of PD pulse decreased on the POC as increase of $N_2$ ratio. For the POE, the DIV and DEV in $N_2$ ratio below 50% were the same voltages as those in $SF_6$ 100%. In this experiment, $SF_6$ 80%-$N_2$ 20% mixture could be considered with the equivalent insulation performance to a GIS.

The Phase Transition and Breakdown Characteristics of SF6 in a Temperature Decline (온도저하에 따른 SF6의 상전이 및 절연특성)

  • Kim, Jong-Whan;Choi, Eun-Hyuck;Park, Kwang-Seo;Yoon, Dae-Hee;Kim, Lee-Kook;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.144-149
    • /
    • 2005
  • In this paper, insulations characteristics by temperature changes($+30{\sim}-40[^{\circ}C]$) of $SF_6$ gas in the experimental chamber were studied. From this result, The breakdown characteristics classify the vapor stage of $SF_6$ according the Paschen's law, the gas & liquid coexisted stage of voltage value increases & much deviation and the VB low stage as the interior of chamber gets filled with mixture of $SF_6$ that are not liquefacted and remaining air which couldn't be ventilated. In addition the ability of insulation of liquid $SF_6$ was higher than that of the highly pressurized $SF_6$ gas. In this research, we want to provide the base data on designing insulation of high-temperature superconductor and the cryogenic equipments by investigating the insulation characteristics of $SF_6$.

The discharge characteristics for various electrode shapes under negative high-voltagein in Liquid $SF_6$ ((-)전압 인가시 액체 $SF_6$의 전극형상에 따른 절연파괴특성)

  • Choi, Eun-Hyuck;Park, Kwang-Seo;Kim, Lee-Kook;Lee, Kwang-Sik;Do, Dae-Ho;Kim, Jong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2085-2087
    • /
    • 2005
  • In this paper the experiments of insulation characteristics by temperature change of $SF_6$ gas and liquid $SF_6$ in model GIS(Gas Insulated Switchgear) were described. From this results, the breakdown voltage was increased with a drop of temperature and an increase of the inner pressure in model GIS. The ability of insulation in liquid $SF_6$ was higher than that of the highly pressurized $SF_6$ gas. A liquid $SF_6$ discharge characteristics was caused by bubble formed evaporation of liquid $SF_6$ and bubble caused by high electric emission. It is considered that these result are fundamental data for electric insulation design of superconductor and cryogenic application machinery which will be studied and developed in the future.

  • PDF

A Study on A Gas Circuit Breaker Development Using Simplified Synthetic Testing Facility (간이합성시험설비를 이용한 가스차단기 개발에 관한 연구)

  • Chong, Jin-Kyo;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.902-904
    • /
    • 2007
  • A $SF_6$ gas circuit breakers are widely used for short circuit current interruption in EHV or UHV power system. During a $SF_6$ gas circuit breaker development, Simplified synthetic testing facility is used. This paper shows how simplified synthetic testing facility is used for a SF6 gas circuit breaker development.

  • PDF

Inprovenent of the Electrical Characteristics of Transformer Oil dissolved with $SF_6 Gas$ ($SF_6 Gas$를 용해시킨 변압기 절연유의 고주파 전기 특성의 향상)

  • Jeon, Chung-Saeng
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.312-318
    • /
    • 1994
  • In this paper the breakdown and dielectric characteristics of purified transformer oil dissolved with $SF_6$ Gas are investigated with a few decade MHz frequency voltage. The results are as follows. 1) High frequency current is a approximately proportional to the square root of high frequency voltage in purified transformer oil. 2) As frequency increase breakdown voltage decrease inversely proportional to the square root of frequency and the high frequency breakdown voltage is lower about 35 percentage than that of AC 3) The breakdown voltage of high frequency has a little increase with the pressure increase of dissolved $SF_6$, Air and Ar Gas. 4) As voltage freguency increases the value of the dielectric loss tangent has increased almost exponentially and the dielectric constant ($\varepsilon$) has tended to decrease with a slope[0.6% MHz]. 5) When dissolved with $SF_6$ Gas, oil electrical characteristics has more increased about 25% than in Air or Ar gas with high voltage frequency.

  • PDF

Measurement and Characterization of Atmospheric SF6 at Korea GAW Center in 2007 (기후변화감시센터의 대기 중 2007년 육불화황 측정 결과 및 특성)

  • Yoo, Hee-Jung;Kim, Jeong-Sik;Lee, Jeong-Soon;Moon, Dong-Min;Lee, Jin-Bok;Kim, Jong-Ho;Kim, Sang-Hoon;Lee, Il-Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • Korea Global Atmosphere Watch Center (KGAWC), which is located in Anmyeondo and, belongs to the Korea Meteorological Administration (KMA), measures sulfur hexafluoride ($SF_6$) in every hour since 2007. In this study, $SF_6$ observed in 2007 are discussed. A gas chromatograph-electron capture detector (GC-ECD) with pre-cooled device is applied during the observation, and produced data are qualified by means of periodic calibration with $SF_6$ standard gas made by Korea Research Institute of Standard and Science (KRISS). $SF_6$ has been greatly paid attention since Kyoto protocol because of its high global warming potential(GWP) with 22,200 times of $CO_2$ in the period of 100 years. It is a man-made compound and has been usually used for gas insulation since 1970s and for etching process in the information technology-based industry since 1990. Average mixing ratio of $SF_6$ in 2007 was 6.65 pmol/mol at Anmyeondo. According to the GAW report published in 2008, average mixing ratio of $SF_6$ in the atmosphere is continuously growing. At present, the average mixing ratio of $SF_6$ in the atmosphere is known to be approximately 6.25 pmol/mol at global observatory. $SF_6$ value in Anmyeondo shows 0.40 pmol/mol greater than that of the Mauna Loa observatory in 2007.

Microstructures and Mechanical Properties of Diecast 0.7wt% CaO added Eco-Mg Parts (0.7wt% CaO 첨가 AZ91D Eco-Mg 다이캐스팅 부품의 미세조직 및 기계적 특성)

  • Seo, Jung-Ho;Lim, Hyun-Kyu;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.224-230
    • /
    • 2010
  • To prevent oxidation of Mg melt, $SF_6$ gas has been generally used for Mg alloys during melting and casting as a cover gas. The use of $SF_6$ gas, however, will be restricted owing to its crucial impact on global warming. Non-$SF_6$ process during melting and casting in diecasting industry has been proved with Eco-Mg alloys by a simple addition of small amount of CaO into Mg alloys. This paper shows non-$SF_6$ diecasting procedures for 0.7wt% CaO added AZ91D Eco-Mg alloys. Cold-chamber diecasting was performed under $CO_2$ atmosphere without $SF_6$ gas. An increment of mechanical properties, especially strength and ductility of Eco-Mg alloys is, in part, due to high-quality melt, refined grain size and $Al_2Ca$ second phase strengthening. Microstructures and mechanical properties of 0.7wt% CaO added AZ91D Eco-Mg alloys are evaluated in comparison with those of conventional AZ91D Mg alloy.

Investigation of Small Current Interruption Performance for New Type of Interrupting Chamber in SF$_{6}$ Gas Circuit Breaker (신차단방식 SF$_{6}$ 가스 차단기의 소전류 차단성능 연구)

  • Song, Won-Pyo;Kweon, Ki-Yeoung;Lee, Jae-Sung;Song, Ki-Dong;Kim, Maeng-Hyun;Ko, Hee-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.519-526
    • /
    • 2005
  • This paper presents computer simulation results for developing new type of SF$_{6}$ Circuit Breaker in terms of cold gas flow after small current interruption. This cold gas flows down a nozzle into the chamber of a circuit breaker. There are many difficult problems in analyzing the gas flow due to complex geometry, moving boundary, shock wave and so on. When predicting the dielectric capability of a gas circuit breaker after interruption, the gas pressure and density distributions due to the cold gas must be considered in addition to the electrical field imposed across the gas. A self-coded computational fluid dynamics (CFD) program is used for the simulation of cold gas flow in order to evaluate the electrical field characteristic across open contacts and transient characteristics of insulations after small current interruption.