• Title/Summary/Keyword: SENSOR - MCU

Search Result 135, Processing Time 0.023 seconds

An Implementation of Smart Flowerpot made with 3D Printer and NodeMCU (3D 프린터와 NodeMCU를 사용한 스마트 화분의 구현)

  • Na, Chaebin;Choi, YeonWoong;Kim, SeKwang;Seo, JangGui;Hwang, Kitae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.231-237
    • /
    • 2017
  • This paper presents an implementation of a smart flowerpot which can adjust humidity and illumination automatically after monitoring the temperature, humidity, and illumination. We made a container of the flowerpot with a 3D printer and embedded a NodeMCU micro controller in it. We attached a temperature sensor, a humidity sensor, an illumination sensor, and a water pump to the NodeMCU. We developed a control program that adjusts humidity and illumination and ran it on the NodeMCU. Also we developed an Android application and set up an MQTT server. Using the MQTT server, the NodeMCU and the Android application can exchange messages which keep sensor values and commands. Using the Android application. the user can send the proper temperature, humidity, and illumination to the smart flowerpot and monitor the sensor values.

A Power Management Scheme for Sensors with MCU in Sleep Mode in Nano-Q+ (Nano-Q+에서 MCU 및 센서의 자동 슬립을 지원하는 전력 관리 기법)

  • So, Sun-Sup;Choi, Bok-Dong;Eun, Seong-Bae;Kim, Byung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1928-1934
    • /
    • 2009
  • This paper proposes a power management scheme for sensor nodes in wireless sensor networks based on sensor node operating system supporting the sensor transparency, which can turn off the sensors when the MCU is in sleep mode. We classify the sensors in two types, that is, event sensors and polling sensors, to be able to decide whether the sensor is a type of sensors whose power supply can be turned off or not, and we design a new scheduler to support recognition of those different types of sensors. Implementing and evaluation of the scheduler and the power manager supporting sensor transparency are shown based on Nano-Q+.

EXCUTE REAL-TIME PROCESSING IN RTOS ON 8BIT MCU WITH TEMP AND HUMIDITY SENSOR

  • Kim, Ki-Su;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.21-27
    • /
    • 2019
  • Recently, embedded systems have been introduced in various fields such as smart factories, industrial drones, and medical robots. Since sensor data collection and IoT functions for machine learning and big data processing are essential in embedded systems, it is essential to port the operating system that is suitable for the function requirements. However, in embedded systems, it is necessary to separate the hard real-time system, which must process within a fixed time according to service characteristics, and the flexible real-time system, which is more flexible in processing time. It is difficult to port the operating system to a low-performance embedded device such as 8BIT MCU to perform simultaneous real-time. When porting a real-time OS (RTOS) to a low-specification MCU and performing a number of tasks, the performance of the real-time and general processing greatly deteriorates, causing a problem of re-designing the hardware and software if a hard real-time system is required for an operating system ported to a low-performance MCU such as an 8BIT MCU. Research on the technology that can process real-time processing system requirements on RTOS (ported in low-performance MCU) is needed.

Design and Implementation of a Sensor Node for Out-Door Environmental Monitoring (옥외 환경 모니터링을 위한 센서노드 설계 및 구현)

  • Son, Jae-Hyun;Cho, Yang-Haeng;Kim, Je-Hong;Joo, Young-Suk;So, Sun-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.117-122
    • /
    • 2007
  • In this paper, we described a design and implementation of a sensor node for environmental monitoring. The main focus of design for sensor nodes is to isolate MCU for treating sensors from the RF module for considering various communication environment. The second is to make the interface between MCU and varity of sensor. In addition, we choose a narrow band communication module, cc1020, for the admittance of Korea government communication law. We also use a uC/OS-II as an operating system which is famous for 8bit MCUs. We showed that the communication performance is sufficient to use the communication module in a out-door environment through several experiments in that it is possible to transmit between 100m distance through experiments in a mountain.

MCU Module Design for Posture Control based on ESP32 (ESP32 기반 자세 제어용 MCU 모듈 설계)

  • Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.289-290
    • /
    • 2021
  • Recently, with the advent of the 4th industrial revolution, the role of robots is increasing, and the use of robots is also increasing in the service field. The most popular model for nonlinear research related to robots is the inverted pendulum system. A balancing robot using an inverted pendulum system is a representative nonlinear system and is mainly used to study control theory and other kinematic structures. In this paper, the state of the robot is measured using the 3-axis acceleration sensor (ADXL345) and 3-axis digital output gyro sensor (ITG-3200) or HMC5883L required for balancing robot control, and using the ESP32-WROOM-32 module. I want to design an MCU module that can control a balancing robot. In addition, by using the ESP32-WROOM-32 MCU module, we intend to design an MCU module that can monitor the state of the balancing robot based on WiFi or Bluetooth.

  • PDF

MHP: Master-Handoff Protocol for Fast and Energy-Efficient Data Transfer over SPI in Wireless Sensing Systems

  • Yoo, Seung-Mok;Chou, Pai H.
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.553-563
    • /
    • 2012
  • Serial peripheral interface (SPI) has been identified as a bottleneck in many wireless sensing systems today. SPI is used almost universally as the physical connection between the microcontroller unit (MCU) and radios, storage devices, and many types of sensors. Virtually all wireless sensor nodes today perform up to twice as many bus transactions as necessary to transfer a given piece of data, as an MCU must serve as the bus master in all transactions. To eliminate this bottleneck, we propose the master-handoff protocol. After the MCU initiates reading from the source slave device and writing to the sink slave device, the MCU as a master becomes a slave, and either the source or the sink slave becomes the temporary master. Experiment results show that this master-handoff technique not only cuts the data transfer time in half, but, more importantly, also enables a superlinear energy reduction.

Development of Intelligent Insulation Degradation Sensor (지능형 절연열화센서 개발)

  • 김이곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.158-161
    • /
    • 2002
  • Many methods were proposed for insulation degradation diagnosis to High voltage and capacity Transformer in live. IDD is difficult by those methods because insulation degradation circumstances and characteristics of electrical plant are different with other Therefore, it is necessary to design diagnosis algorithms fitting for each. In this paper, We develop IIDS that used diagnosis algorithm with fuzzy model and hardware with MCU.

Design and Implementation of Prototype Model for Infant Care system using Smart Phone (스마트폰을 이용한 Infant Care 시스템의 프로트 타입모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.103-109
    • /
    • 2022
  • This significance of the infant care system has emerged due to sudden infant death during sleeping. This paper presented a design and implementation of a prototype model, which is a infant care device controlled by a smartphone using Bluetooth technology. Prototype Device Model consists of MCU(microcontroller unit), Accelerometer Sensor, Temperature Measuring Sensor, Sound Measuring Sensor, Bluetooth Module, and Camera Module. The proposed application transfers the information to the parent's smartphone and computers, such as infant's falling, crying, and fever detection. A test verified the availability of a prototype infant care system model using Bluetooth Low Energy with operating the low power driving.

MCU Module Design for Smart Farm Sensor Processing (스마트팜 센서 처리용 MCU 모듈 설계)

  • Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.285-286
    • /
    • 2021
  • With the recent development of Internet of Things (IoT) technology, smartization technology is expanding to the fields of agriculture, livestock, and fisheries, and smartization is in progress. In this smart technology, the most important thing is how to measure the data in the field and transmit it to the management system. Currently, the sensors used in the construction of smart farms and other livestock houses and farms are measuring and monitoring smart farms and other environmental conditions through various sensors such as temperature, humidity, CO gas, CO2, hydrogen, and O2. The communication method between these sensors and the HMI (Human Machine Interface) module that controls and manages the smart farm is still mainly using the RS-485-based modbus-RTU method. In this paper, we intend to design the MCU module for HMI so that various sensor modules can be connected to manage data through the RS-485-based Modbus method so that the sensor data required for smart farm construction can be managed by the HMI module.

  • PDF

Design and Implementation of a sensor node for out-door environmental monitoring (옥외 환경 모니터링을 위한 센서노드 설계 및 구현)

  • Son, Jae-Hyun;Cho, Yang-Haeng;Kim, Je-Hong;Joo, Young-Suk;So, Sun-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.77-82
    • /
    • 2007
  • In this paper, we described a design and implementation of a sensor node for environmental monitoring. The main focus of design for sensor nodes is to isolate MCU for treating sensors from the RF module for considering various communication environment. The second is to make the interface between MCU and varity of sensor. In addition, we choose a narrow band communication module, cc1020, for the admittance of Korea government comminication law. We also use a uC/OS-II as an operating system which is famous for 8bit MCUs. We showed that the communication performance is sufficient to use the communication module in a out-door environment through several experiments in that it is possible to transmit between loom distance through experiments in a mountain.

  • PDF