• 제목/요약/키워드: SEM-EDX analysis

검색결과 306건 처리시간 0.025초

ANISOTROPY CONSTANTS OF $(Sm_{0.5}RE_{0.5})Fe_{11}Ti$ COMPOUNDS (RE=RARE EARTH)

  • Kim, H.T.;Kim, Y.B.;Park, W.S.;Kim, C.S.;Kim, T.K.;Jin, Han-Min
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.683-686
    • /
    • 1995
  • Using by the x-ray diffractometry(XRD), the thermomagnetic analysis(TMA), a scanning electron microscopy (SEM-EDX), we knew that the $(Sm_{0.5}RE_{0.5})Fe_{11}Ti$ (RE=Ce,Pr,Nd,Sm,Gd,Tb) compounds were formed to tetragonal $ThMn_{12}$-type structure having a uniaxial magnetocrystalline anisotropy with easy magnetization c-axis. The intrinsic magnetic properties of those were determined by fitting the two magnetization curves of experimental and calculation magnetization. The anisotropy constant $K_{1}$ of this compounds was in the range of $1.75\;-\;9.2\;MJ/m^{3}$ and approximately one order higher than $K_{2}$. $SmFe_{11}Ti$ had the highest anisotropy of $K_{1}\;=\;9.2\;MJ/m^{3}$, $K_{2}\;=\;0.4\;MJ/m^{3}$ and ${\mu}_{o}H_{A}=\;19.8\;T$ among the compounds, substitution of any other rare earth elements for Sm decreased magnetocrystalline anisotropy.

  • PDF

Plasmonic effects and size relation of gold-platinum alloy nanoparticles

  • Jawad, Muhammad;Ali, Shazia;Waseem, Amir;Rabbani, Faiz;Amin, Bilal Ahmad Zafar;Bilal, Muhammad;Shaikh, Ahson J.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.169-180
    • /
    • 2019
  • Plasmonic effects of gold and platinum alloy nanoparticles (Au-Pt NPs) and their comparison to size was studied. Various factors including ratios of gold and platinum salt, temperature, pH and time of addition of reducing agent were studied for their effect on particle size. The size of gold and platinum alloy nanoparticles increases with increasing concentration of Pt NPs. Temperature dependent synthesis of gold and platinum alloy nanoparticles shows decrease in size at higher temperature while at lower temperature agglomeration occurs. For pH dependent synthesis of Au-Pt nanoparticles, size was found to be increased by increase in pH from 4 to 10. Increasing the time of addition of reducing agent for synthesis of pure and gold-platinum alloy nanoparticles shows gradual increase in size as well as increase in heterogeneity of nanoparticles. The size and elemental analysis of Au-Pt nanoparticles were characterized by UV-Vis spectroscopy, XRD, SEM and EDX techniques.

Relationship of the U-Factor and Chemical Structure with Applied Metal and Polymer Material Assembly in Curtain Wall Frame

  • Park, Tongso
    • 한국재료학회지
    • /
    • 제31권8호
    • /
    • pp.450-457
    • /
    • 2021
  • From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.

Diamond-like Carbon Tribological Endurance using an Energetic Approach

  • Alkelae, Fathia;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.179-188
    • /
    • 2021
  • Reputed for their low friction coefficient and wear protection effect, diamond-like carbon (DLC) materials are considered amongst the most important lubricant coatings for tribological applications. In this framework, this investigation aims to elucidate the effect of a few operating parameters, such as applied stress and sliding amplitude on the friction lifetime of DLC coatings. Fretting wear tests are conducted using a 12.7 mm radius counterpart of 52100 steel balls slid against a substrate of the same material coated with a 2 ㎛ thickness DLC. Approximately, 5 to 57 N force is applied, generating a maximum Hertzian contact pressure of 430 to 662 MPa, corresponding to the applied force. The coefficient of friction (CoF) generates three regimes, first a running-in period regime, followed by a steady-state evolution regime, and finally a progressive increase of the CoF reaching the steel CoF value, as an indicator of reaching the substrate. To track the wear scenario, interrupted tests are performed with analysis combining scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), 3D profilometer and micro-Raman spectroscopy. The results show two endurance values: one characterizing the coating failure (Nc1), and the other (Nc2) indicating the friction failure which is situated where the CoF reaches a threshold value of μth = 0.3 in the third regime. The Archard energy density factor is used to determine the two endurance values (Nc1, Nc2). Based on this approach, a master curve is established delimitating both the coating and the friction endurances.

알루미늄 합금에서 Zr첨가가 TiB2의 변형과 결정립크기에 미치는 영향 (Influence of Zr Addition on TiB2 Modification and Grain Size in Aluminium Alloys)

  • 강원덕;박현균
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.619-627
    • /
    • 2011
  • The poisoning effect of Zr in aluminum alloys was investigated by analyzing the filtered cakes of aluminum alloy melt taken with the $Prefil^{(R)}$ footprinter through a variety of analytic instruments, SEM/EDX, Auger, and TEM. Experimental results indicated that the morphology and chemical composition of the aluminum alloys were not modified with the addition of Zr, which is to previous belief that Zr poisoning is caused by modification of $(Ti_{1-x}Zr_x)Al_3$. On the other hand, $TiAl_3$ surroundig $TiB_2$ particles was modified and its lattice parameter was more mismatched by increasing Zr content, leading to less nucleation rate. This is also supported by the observation that the poisoning effect is reduced when Ti is added, resulting in a lower content ratio of Zr to Ti. These results suggest that extra Ti should be added to eliminate the poisoning effect of Zr in aluminum alloys containing Zr.

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.

Analysis on Constituent Elements and Microstructure of Fiberglass Splint and Cast

  • Ham, Joo Hyun;Jung, Han Suk
    • 한국재료학회지
    • /
    • 제31권8호
    • /
    • pp.433-438
    • /
    • 2021
  • In this study, microstructural characteristics and constituent elements of fiberglass splint and cast are examined using a scanning electron microscope and an energy dispersive X-ray spectrometer. As observed by the scanning electron microscope, fiberglass splint and cast had a porous structure with many bundles of fiberglass textures well assembled. Spaces between bundles of the fiberglass splint are triangular or elliptical shaped and the long-axis diameter is measured at about 1 mm. The thickness of fiber bundles covered with plaster is measured at 600 ㎛ and the diameter of a single strand of fiberglass is up to 10 ㎛. The thickness of the fiberglass bundle of the fiberglass splint is measured at about 700 ㎛. Spaces between bundles are formed in the shape of triangles with gentle edges and long-axis diameter of up to 1.4 mm, which is larger than that of the splint. The thickness of a single strand of fiberglass of the plaster-coated cast is 11.5 ㎛, which is thicker than that of fiberglass of the splint. As a result of analyzing constituent elements of the fiberglass cast and the splint with an energy dispersive X-ray spectrometer, Ca, Si, and Al components are identically detected. This result shows that the fiberglass cast has a smoother surface with hardened plaster than the fiberglass splint. The thickness of the fiberglass bundle and the thickness of a single strand of the fiberglass are also larger than those of the fiberglass splint.

Enhanced Arsenic(V) Removal from Aqueous Solution by a Novel Magnetic Biochar Derived from Dairy Cattle Manure

  • Akyurek, Zuhal;Celebi, Hande;Cakal, Gaye O.;Turgut, Sevnur
    • Korean Chemical Engineering Research
    • /
    • 제60권3호
    • /
    • pp.423-432
    • /
    • 2022
  • Magnetic biochar produced from pyrolysis of dairy cattle manure was used to develop an effective sorbent for arsenic purification from aqueous solution. Biomass and magnetized biomass were pyrolyzed in a tube furnace with 10 ℃/min heating rate at 450 ℃ under nitrogen flow of 100 cm3/min for 2 h. Biochars were characterized by SEM-EDX, BET, XDR, FTIR, TGA, zeta potential analysis. The resultant biochar and magnetic biochar were opposed to 50-100-500 ppm As(V) laden aqueous solution. Adsorption experiments were performed by using ASTM 4646-03 batch method. The effects of concentration, pH, temperature and stirring rate on adsorption were evaluated. As(V) was successfully removed from aqueous solution by magnetic biochar due to its highly porous structure, high aromaticity and polarity. The results suggest dairy cattle manure pyrolysis is a promising route for managing animal manure and producing a cost effective biosorbent for efficient immobilization of arsenic in aqueous solutions.

Synthesis of magnetite iron pumice composite for heterogeneous Fenton-like oxidation of dyes

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • 제9권3호
    • /
    • pp.161-173
    • /
    • 2020
  • The removal of two dyes, namely Methylene Blue (MB) and Reactive Brillant Red (RR) from aqueous solution was investigated using magnetite iron coated pumice (MIP) composite in the Fenton-like oxidation process. A weight ratio of 2.5 g (with the molar ratio of Fe3+ to Fe2+ to be 2) (5%) of iron to the total pumice (50 g) was enabled during synthesis of catalyst. Surface composition and characteristics of the catalyst were assessed by SEM-EDX, FT-IR, Raman spectral analysis. The effect of the amount of pumice solely used or MIP, H2O2 concentration, pH and initial concentration of MB or RR dyes on Fenton-like process efficiency was investigated. EDAX spectrums of pumice and MIP showed that oxygen and silisium are the major elements. The Fe content of MIP increased to 2.24%. SEM, FT-IR and Raman spectrums confirmed the impregnation of Fe on pumice surface. The experimental results revealed that high removal rates of dyes could be obtained using MIP that demonstrated a higher stability for removal of MB dye. pH affected the removal efficiency of both dyes and the degradation of both dyes was sharply dropped when pH was increased above 4. The removal of dyes did not significantly change with increasing H2O2 concentration. Degradation rates of both MB and RR dyes increased 3.3 and 2.8 times with the use of MIP compared to pumice alone, respectively. Furthermore, MIP enabled a good removal efficiency at higher dye concentrations. It can be emphasized that MIP composite can be used in the heterogeneous Fenton-like systems considering the economic and easily separation aspects.

규소 처리에 의한 오이잎의 규소분포 및 흰가루병균 생장억제 (Ditribution of silicon and growth inhibition of powdery mildew fungus in cucumber leaves in silicon-present hydroponic culture)

  • 이중섭
    • 농약과학회지
    • /
    • 제4권2호
    • /
    • pp.44-49
    • /
    • 2000
  • 본 시험은 오이 양액재배시 배양액내 규산칼륨($K_{2}SiO_{3}$) 처리에 의한 생육단계별 규소의 흡수특성, 체내분표 병원균의 침입억제 효과를 검토하기 위하여 수행하였다. 잎에서의 규소 분포는 TEM, SEM 및 EDX-ray를 사용하여 4개(SEM, Ca, Si, K)의 구성원소를 각각 측정하였다. 흡수된 규소는 잎으로 이동하여 모용(毛茸, trichome, hair)을 둘러싸고 있는 기부 세포에 축적되었다. 모용에서의 규소는 고농도의 칼슘 및 칼륨과 혼재하여 분포하였고, 저농도 처리시에는 모용기부를 제외한 표피세포에서는 감지 할 수 없는 수준으로 분포하였다. 잎에서의 규소 축적은 처리 후 24시간에서 48시간 사이에 세포벽 주위에 가장 많이 축적되었고, 그 이후에도 다소 증가하는 경향이었다. 처리된 규소는 발아하고 있는 흰가루병 분생포자의 인접 조직의 세포벽과 병원균 흡기 주변에 다량 축적되어 물리적인 장벽으로 작용하였다. 고농도의 규산 처리된 잎 병반상의 발아관 길이는 낮은 농도의 처리구와 비교하여 현저히 짧았으며, 규산 처리농도와 부의 상관관계를 나타내었다. 배양액내 처리된 규산 농도는 오이가 생장함에 따라 감소하여 뿌리를 통하여 작물체내로 흡수되었으며, 저농도 처리구(0.85 mM이하)에서는 흡수되는 양이 현저히 적었다.

  • PDF