• Title/Summary/Keyword: SEM-EDS techniques

Search Result 74, Processing Time 0.024 seconds

Blocking of Fuel Filter in Aircraft by an Accelerator Blooming (가류 촉진제 블루밍에 의한 전투기 연료필터의 막힘)

  • Kim, Ik-Sik;Hwang, Young-Ha;Sohn, Kyung-Suk;Lee, Jung-Hun;Sohn, Byung-Hoon
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Blocking of fuel filter in aircraft greatly can affect loss of pilot's life and of the aircraft. The investigation of failures is, thus, of vital importance in preventing incidents in advance. The fuel filter of aircraft plays an important role in filtering various debris from jet fuel. It filters impurities smaller than 10 ${\mu}m$ particles from jet fuel provided with the speed of 1,330 pounds per hour. It must be replaced per 500 h on the basis of operating time. However, even before reaching 500 h, the warning sign lighted on due to blocking of fuel filter. Recently, these similar defects have happened repeatedly. Therefore, in this study, the cause of blocking fuel filter in aircraft was investigated using various analytical techniques such as FT-IR microscopy, FE-SEM/EDS, and total sulfur determinator. Consequently, the blocking material of fuel filter was identified to an accelerator from the integral fuel tank sealant. And a mechanism for the formation of the blocking material of fuel filter by an accelerator blooming phenomenon in fuel tank was suggested.

A Study on the Nitrate Removal in Water by Chelating Bond of Calcium Alginate (Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구)

  • Kim, Tae Kyeong;Song, Ju Young;Kim, Jong Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.795-801
    • /
    • 2016
  • This study is on the denitrification process using the sodium alginate and $CaCl_2$ as a flocculant. Removal techniques of nitrate nitrogen from waste water are reverse osmosis, ion exchange, electro dialysis and biological method etc. We tried to remove nitrate nitrogen with flocculation and sedimentation method in the present study. Calcium alginate is expected to form a chelate bond with nitrate nitrogen in the solution. So the effects of flocculantt component, flocculation reaction time, molar ratio of the flocculant, flocculant injection rate are studied to determine the best removal rate of nitrate nitrogen. In addition, we tried to determine the nitrate nitrogen removal mechanism by analyzing the structure and component ratio of the configuration after the agglutination precipitate by FE-SEM and EDS. As a result, the nitrate nitrogen removal mechanism is turned out to form calcium-nitro-alginate, and the best mole ratio of flocculating agent is 1 : 1, the injection rate of the flocculant was up to 2%, the removal rate of the nitrate nitrogen to be 56.7% in the synthetic wastewater.

Study on the Characteristics of Materials and Manufacturing Techniques for the Mural Paintings in Daeunjeon at Ssanggyesa Temple, Jindo (진도 쌍계사 대웅전 벽화의 재질특성 및 제작기법 연구)

  • Lee, Na Ra;Yu, Yeong Gyeong;Lee, Hwa Soo
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.701-711
    • /
    • 2021
  • This study identifies the structure and material characteristics of the mural paintings in Daeungjeon at Ssanggyesa temple in Jindo by conducting scientific research and analysis including microscope examination, SEM-EDS, XRD, particle size analysis, and others. According to the analyses, the murals were considered to be of a typical soil mural style for Korean Buddhist murals, given that the walls were made of sand and soil and the murals had layers consisting of wall layers and a finishing layer. However, some finishing layer used calcite, while some ground layer used zinc white beneath the thick paint. In addition, there were similar features to those found on the surfaces of oil paintings such as cracks along with the paint layer, high gloss on surfaces, and thick brush strokes in many areas. It was found that the walls on which the murals were painted were made of soil but that the paint layer was created based on the oil painting technique using drying oil. It determined that the murals were painted in a unique painting style that is rarely found in other typical Buddhist murals in Korea.

Factors Affecting Nucleation and Growth of Chromium Electrodeposited from Cr3+ Electrolytes Based on Deep Eutectic Solvents

  • El-Hallag, Ibrahim S.;Moharram, Youssef I.;Darweesh, Mona A.;Tartour, Ahmed R.
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.291-309
    • /
    • 2020
  • Chromium was electrodeposited from deep eutectic solvents-based Cr3+ electrolytes on HB-pencil graphite electrode. Factors influencing the electrochemical behavior and the processes of Cr nucleation and growth were explored using cyclic voltammetry and chronoamperometry techniques, respectively. Cr3+ reduction was found to occur through an irreversible diffusion-controlled step followed by another irreversible one of impure diffusional behaviour. The reduction behavior was found to be greatly affected by Cr3+ concentration, temperature, and type of hydrogen bond donor used in deep eutectic solvents (DESs) preparation. A more comprehensive model was suggested and successfully applied to extract a consistent data relevant to Cr nucleation kinetics from the experimental current density transients. The potential, the temperature, and the hydrogen bond donor type were estimated to be critical factors controlling Cr nucleation. The nucleation and growth processes of Cr from either choline chloride/ethylene glycol (EG-DES) or choline chloride/urea (U-DES) deep eutectic solvents were evaluated at 70℃ to be three-dimensional (3D) instantaneous and diffusion-controlled, respectively. However, the kinetics of Cr nucleation from EG-DES was found to be faster than that from U-DES. Cr nucleation was tending to be instantaneous at higher temperature, potential, and Cr3+ concentration. Cr nuclei electrodeposited from EG-DES were characterized at different conditions using scanning electron microscope (SEM). SEM images show that high number density of fine spherical nuclei of almost same sizes was nearly obtained at higher temperature and more negative potential. Energy dispersive spectroscopy (EDS) analysis confirms that Cr deposits were obtained.

Influence of Coating Defect Ratio on Tribological Behavior Determined by Electrochemical Techniques (전기화학적 분석을 통해 산출된 코팅 결함율이 트라이볼로지적 특성에 미치는 영향 평가)

  • Lee Young-Ze;Kim Woo-Jung;Ahn Seung-Ho;Kim Ho-Gun;Kim Jung-Gu;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2004
  • Many of the current development in surface modification engineering are focused on multilayered coatings, which have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel in this study. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N,\;WC-Ti_{0.53}Al_{0.47}N,\;WC-Ti_{0.5}Al_{0.5}N\;and\;WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behaviors. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec and a normal load of 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball $(H_R\;=\;66) $ having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with energy-dispersive spectroscopy (EDS). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$coatings with increasing of Al (aluminum) concentration.

A Reproduction Study on Finishing Layer of Double Bass, Maggini Giovanni Paolo (마찌니 조반니 파올로 더블베이스의 마감층 재현연구)

  • Lee, Chaehoon;Yoo, Seunghwan;Chung, Yongjae
    • Conservation Science in Museum
    • /
    • v.20
    • /
    • pp.93-106
    • /
    • 2018
  • The musical instruments displayed in Korean Museums consist of various materials such as wood, stone, metal, leather, and soil. As for instruments manufactured of organic materials, as time passed, they became damaged due to physical, chemical and biological effects. In order to restore these instruments, studies on the materials as well as the manufacturing techniques should be simultaneously conducted because of the characteristics of sound making instruments. In this study, 17th century Double bass were chosen as the model for the restoration study. The type of wood was identified and the finishing layer was analyzed. To investigate the finishing layer, the surface observation was conducted and the component analysis was also conducted by using both FT-IR and SEM-EDS. As a result, the species of wood were identified as the maple trees. In case of the finishing layer of it, the diluted Goma Lacca, a type of resin, with alcohol as the main solvent was covered for varnishing layer. These results were combined to determine the restoration of Double bass Maggini Giovanni Paolo varnishing layer and by this Violin was made.

Microstructural Characterization and Dielectric Properties of Barium Titanate Solid Solutions with Donor Dopants

  • Kim, Yeon-Jung;Hyun, June-Won;Kim, Hee-Soo;Lee, Joo-Ho;Yun, Mi-Young;Noh, S.J.;Ahn, Yong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1267-1273
    • /
    • 2009
  • The correlation between the sintering temperature and dielectric properties in the $Nb^{5+}\;and\;Ta^{5+}$ doped BaTi$O_3$ solid solutions have been investigated. The samples were sintered at temperatures ranging from 1250 to 1350 ${^{\circ}C}$ for 4 h in air. SEM, XRD and SEM/EDS techniques were used to examine the structure of the samples with particular focus on the incorporation of $Nb^{5+}\;and\;Ta^{5+}$ ions into the BaTi$O_3$ crystal lattice. The X-ray diffraction peaks of (111), (200) and (002) planes of BaTi$O_3$ solid solution doped with different fractions of $Nb^{5+}\;and\;Ta^{5+}$ were investigated. The dielectric properties were analyzed and the relationship between the properties and structure of doped BaTi$O_3$ was established. The fine-grain and high density of the doped BaTi$O_3$ ceramics resulted in excellent dielectric properties. The dielectric properties of this solid solutions were improved by adding a small amount of dopants. The transition temperature of the 1.0 mole% $Ta^{5+}$ doped BaTi$O_3$ solid solution was $\sim$110 ${^{\circ}C}$ with a dielectric constant of 3000 at room temperature. At temperatures above the Curie temperatures, the dielectric constant followed the Curie-Weiss law.

A Study on the Conservation and Management of the Painting of Shamanistic Spirits in Chiseonggwang Buddha (치성광여래 무신도의 과학적 분석 및 보존처리 연구)

  • Lee, Hyun Jeong;Seo, Jeong Ho
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.712-722
    • /
    • 2021
  • This study presents a method for conserving shamanistic spirits in Chiseonggwang Buddha. Scientific investigation has revealed that these spirits have been subject to degeneration as a result of severe exfoliation and pollution. The materials and preservation treatment techniques used in create these shamanistic spirits were identified through visual inspection and using appropriate scientific equipment. The different types of background paper, background material, and color pigments used in create the shamanistic spirits were analyzed using a colorimeter, stereoscopic microscope, and SEM-EDS techniques. The analysis revealed that the pulp paper was used as the background and synthetic fiber polyester as the background material. In addition, the study of the pigment revealed that the color components were all synthetic, except for red lead [Pb3O4] and oyster shell white [CaCO3]. Moreover, it was confirmed that the green pigment, identified as emerald green [Cu(C2H3O2)2.3Cu(AsO2)2], was a major component of shamanistic spirits in the late 19th century. The shamanistic spirits in Chiseonggwang Buddha were conserved by identifying raw materials and pigments through this detailed analysis.

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF