• Title/Summary/Keyword: SEM Image

Search Result 507, Processing Time 0.029 seconds

A Study of Self-Sealing Rubber Material Using Foamed Natural Rubber (NR 발포를 사용한 자기 밀폐형 고무 재료의 연구)

  • Kim, Do-Hyun;Kim, Hyun-Mook;Lee, Chang-Seop;Ahn, Won-Sool;Kim, Joon-Hyung
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.88-96
    • /
    • 2006
  • The self-sealing rubber material for a fuel cell which has self-sealing ability, in case of fuel leakage, was studied. Cure characteristics, density, swelling, and surface morphology of foamed natural rubber were investigated with carbon black and with processing oil within the range of $10{\sim}30phr$. The rheological properties indicated that the value of $ts_2$ and the value of $Tc_{90}$ were increased with increasing a content of processing oil, while carbon black did not show a similar trend. A difference in density by foaming was decreased to one fifth scale compared to the initial value. According to the swelling test of foamed natural rubber in fuel C, isooctane and toluene, all the self-sealing action was finished in two minutes. From the SEM image for the surface of rubber compounding, a foaming by sodium bicarbonate was found to be unequal and consecutive foaming cell.

Evaluation of the effects of two novel irrigants on intraradicular dentine erosion, debris and smear layer removal

  • Gorduysus, Melahat;Kucukkaya, Selen;Bayramgil, Nursel Pekel;Gorduysus, Mehmet Omer
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.216-222
    • /
    • 2015
  • Objectives: To evaluate the effects of copolymer of acrylic acid and maleic acid (Poly[AA-co-MA]) and calcium hypochlorite ($Ca(OCl)_2$) on root canal dentin using scanning electron microscope (SEM). Materials and Methods: Twenty-four single-rooted teeth were instrumented and the apical and coronal thirds of each root were removed, leaving the 5 mm middle thirds, which were then separated into two pieces longitudinally. The specimens were randomly divided into six groups and subjected to each irrigant for 5 min as follows: G1, $Ca(OCl)_2$; G2, Poly(AA-co-MA); G3, $Ca(OCl)_2$ + Poly(AA-co-MA); G4, sodium hypochlorite (NaOCl); G5, ethylenediaminetetraacetic acid (EDTA); G6, NaOCl+EDTA. The specimens were prepared for SEM evaluation. Smear layer, debris and erosion scores were recorded by two blinded examiners. One image from G3 was analyzed with energy dispersive spectroscopy (EDS) on suspicion of precipitate formation. Data were analyzed using the Kruskal-Wallis and Dunn tests. Results: G1 and G4 showed the presence of debris and smear layer and they were statistically different from G2, G3, G5 and G6 where debris and smear layer were totally removed (p < 0.05). In G1 and G4, erosion evaluation could not be done because of debris and smear layer. G2, G3 and G5 showed no erosion, and there was no significant difference between them. G6 showed severe erosion and was statistically different from G2, G3 and G5 (p < 0.05). EDS microanalysis showed the presence of Na, P, and Ca elements on the surface. Conclusions: Poly(AA-co-MA) is effective in removing the smear layer and debris without causing erosion either alone or with $Ca(OCl)_2$.

The Physical Fluidity Properties of Cement Containing Melamine-type Superplasticizer Obtained with Various Synthetic Conditions (다양한 합성조건에서 얻어진 멜라민계 고유동화제가 함유된 시멘트의 물리적 유동특성)

  • Yoon, Sung-Won;Lee, Bum-Jae
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.815-821
    • /
    • 2005
  • Three major commercially available organic chemical admixtures are modified lignosulfonates (LS), sulfonated naphthalene-formaldehyde resins (SNF) and sulfonated melamine-formaldehyde (SMF). In this study, various sulfonated melamine-formaldehyde (SMF) superplasticizers were synthesized via four synthetic steps including hydroxymethylation (Step 1), sulfonation (Step 2), polymerization (Step 3) and neutralization and stabilization (Step 4). In this synthesis, mole ratio of melamine to formaline and the amount of acid catalyst used were varied. The obtained SMF superplasticizers were applied to cement paste and mortar and their physical properties including workability, slump loss, compressive strength were investigated. Also their hydrate shapes were investigated by examining SEM images of the cured paste. It was found that the fluidity properties of cement were significantly influenced by the structure of SMF condensates.

Characteristics of Electroplated Ni Thick Film on the PN Junction Semiconductor for Beta-voltaic Battery (베타전지용 PN 접합 반도체 표면에 도금된 Ni 후막의 특성)

  • Kim, Jin Joo;Uhm, Young Rang;Park, Keun Young;Son, Kwang Jae
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a $^{63}Ni$ plating condition on the PN junction semiconductor needed for production of beta-voltaic battery. PN junction semiconductors with a Ni seed layer of 500 and $1000{\AA}$ were coated with Ni at current density from 10 to $50mA\;cm^{-2}$. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased. The results showed that the optimum surface shape was obtained at a current density of $10mA\;cm^{-2}$ in seed layer with thickness of $500{\AA}$, $20mA\;cm^{-2}$ of $1000{\AA}$. Also, pure Ni deposit was well coated on a PN junction semiconductor without any oxide forms. Using the line width of (111) in XRD peak, the average grain size of the Ni thick firm was measured. The results showed that the average grain size was increased as the thickness of seed layer was increased.

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash (순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.165-172
    • /
    • 2021
  • The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.

Radially patterned polycaprolactone nanofibers as an active wound dressing agent

  • Shin, Dongwoo;Kim, Min Sup;Yang, Chae Eun;Lee, Won Jai;Roh, Tai Suk;Baek, Wooyeol
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.399-404
    • /
    • 2019
  • Background The objectives of this study were to design polycaprolactone nanofibers with a radial pattern using a modified electrospinning method and to evaluate the effect of radial nanofiber deposition on mechanical and biological properties compared to non-patterned samples. Methods Radially patterned polycaprolactone nanofibers were prepared with a modified electrospinning method and compared with randomly deposited nanofibers. The surface morphology of samples was observed under scanning electron microscopy (SEM). The tensile properties of nanofibrous mats were measured using a tabletop uniaxial testing machine. Fluorescence-stained human bone marrow stem cells were placed along the perimeter of the radially patterned and randomly deposited. Their migration toward the center was observed on days 1, 4, and 7, and quantitatively measured using ImageJ software. Results Overall, there were no statistically significant differences in mechanical properties between the two types of polycaprolactone nanofibrous mats. SEM images of the obtained samples suggested that the directionality of the nanofibers was toward the central area, regardless of where the nanofibers were located throughout the entire sample. Florescence images showed stronger fluorescence inside the circle in radially aligned nanofibers, with significant differences on days 4 and 7, indicating that migration was quicker along radially aligned nanofibers than along randomly deposited nanofibers. Conclusions In this study, we successfully used modified electrospinning to fabricate radially aligned nanofibers with similar mechanical properties to those of conventional randomly aligned nanofibers. In addition, we observed faster migration along radially aligned nanofibers than along randomly deposited nanofibers. Collectively, the radially aligned nanofibers may have the potential for tissue regeneration in combination with stem cells.

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.

Analyzing the Effects of Consumer Value Perception, Environmental Motives, and Perceived Barriers on the Purchase Intention of Vegan Cosmetics (비건 화장품의 구매의도에 영향을 미치는 소비자 가치 인식, 환경적 동기 및 지각된 장벽의 영향 분석)

  • Eun-Hee Lee;Seunghee Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1043-1054
    • /
    • 2023
  • Amidst the rapid growth of the vegan cosmetics market, consumer orientation towards environmental and ethical values has been intensifying. However, research on this subject remains limited. This study delves into the relationship between consumer value perception, environmental motivations, and perceived barriers influencing the purchase intentions of vegan cosmetics. Conducting a PLS-SEM analysis on a sample of 300 women with experience using vegan cosmetics, it was discerned that monetary value, social value, brand value, emotional value, quality value, and environmental knowledge play significant roles in influencing purchase intentions. The moderating effect analysis highlighted image barriers and value barriers as crucial factors. Through Importance-Performance Map Analysis, emotional value emerged as a pivotal element in strategizing to strengthen the purchasing intentions for vegan cosmetics. This research contributes both theoretically and practically to enhancing the competitive edge of the vegan cosmetics market and promoting sustainable consumption behavior.

Preparation and Characteristic of Size Controlled Platy Silver by Polyol Process with $PdCl_2$ ($PdCl_2$ 첨가 폴리올공정(工程)을 이용(利用)한 판상 은(銀) 분말(粉末) 제조(製造) 및 특성(特性))

  • Shin, Gi-Wung;Ahn, Jong-Gwan;Kim, Dong-Jin;Cho, Sung-Wook;Ahn, Jea-Woo
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.58-67
    • /
    • 2010
  • Platy silver powders with varied size and thickness were prepared by polyol process with $PdCl_2$ in ethylene glycol and characterized its properties and investigated the effects of reaction time, $NH_4OH$, PVP(poly-vinylpyrrolidone) and $PdCl_2$. The characteristics of the products were verified by scanning electron microscopy(SEM), high resolution transmitted electron microscopy(HR-TEM), X-ray diffraction(XRD) and particle size analyzer(PSA) and image analyzer. Platy silver powder was prepared about $5.5\;{\mu}m$ of size and $0.2\;{\mu}m$ at 120minute. It was found that the size of powders increased by the increasing of $NH_4OH$ and $PdCl_2$ concentrations, and the thickness of powders was decreased by increasing of PVP concentration.

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF EMPRESS 2 CERAMIC AND TARGIS-VECTRIS CROWN

  • Cha Young-Joo;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.599-610
    • /
    • 2001
  • Due to an increasing interest in esthetics and concerns about toxic and allergic reactions to certain alloys, patients and dentists have been looking for metal-free tooth-colored restorations. Recent improvement in technology of new all-ceramic materials and composite materials has broadened the options for esthetic single crown restorations. The aim of this investigation was to study the fracture strength of the metal-free posterior single crowns fabricated using two recently introduced systems, Empress 2 ceramic and Targis-Vectris. Forty premolar-shaped stainless steel dies with the 1mm-wide circumferential shoulder were prepared. Ten cylindrical crowns having a diameter of 8.0mm and total height of 7.5mm were fabricated for each crown system respectively(PFM, Empress staining technique, Empress 2 layering technique, and Targis- Vectris). The crowns were filled with cement and placed on the stainless steel dies with firm finger pressure. The crowns were then stored in distilled water at room temperature for 24 hours before testing. The crowns were tested for fracture strength in an Instron universal testing machine (Instron 6022). With a crosshead speed of 1mm/min the center of the occlusal surface of the crown was loaded using a 4-mm-diameter stainless steel ball until fracture occurred. The fracture surfaces of the crowns were gold coated and examined using scanning electron microscopy(Jeol JSM-840 Joel Ltd., Akishima, Tokyo, Japan). Within the parameters of this study the following conclusions were drawn: 1. The mean fracture strength for PFM crowns was 5829(${\pm}906$)N; for Empress staining technique the fracture strength was 1697(${\pm}604$)N; for Empress 2 Layering technique the fracture strength was 1781N(${\pm}400$)N, and the fracture strength for Targis- Vectris was 3093(${\pm}475$)N. 2. The fracture strength of the PFM crowns was significantly higher than that of the Empress 2 and the Targis-Vectris crowns (P<0.05). 3. The fracture strength of the Targis-Vectris crowns was significantly higher than that of the Empress 2 crowns (P<0.05). 4. No statistical difference was found when Empress staining technique was compared with Empress 2 layering technique. 5. The SEM image of fracture surface of Empress 2 crown showed a very dense microstructure of the lithium disilicate crystals and the SEM image of fracture surface of Targis-Vectris crown showed indentations of Vectris and some fibers tom off from Vectris.

  • PDF