• Title/Summary/Keyword: SEM : scanning electron microscope

Search Result 1,888, Processing Time 0.027 seconds

An Experimental Study on Evaluation of Bond Strength of Arc Thermal Metal Spaying According to Treatment Method of Water Facilities Concrete Surface (수처리 시설물 콘크리트 표면처리 방법에 따른 금속용사 피막의 부착성능 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung;Shin, Jun-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • In this study, the bond strength of metal spraying system by surface treatment of concrete (waterproof/corrosion method) in water treatment facilities was evaluated. The results showed that the system with Sa-P-R-(S) (sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing) led to the desirable performance. The bond strength, the coefficient of water permeability and air permeability were 3.7MPa, $0.68{\ast}10^{-8}cm/sec$, and $0.45{\ast}10^{-16}m^2$, respectively. In scanning electron microscope analysis, the microstructure of specimen coated with perviousness surface hardener was much denser than that without it. Therefore, the specimen coated with sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing had the best bond performance and was the most suitable system to concrete surface in water treatment facilities.

Sterilization effect of electrolyzed water and chlorine dioxide on Rubus coreanus Miquel (전기분해수와 이산화염소수 처리 복분자(Rubus coreanus Miquel)의 살균효과)

  • Teng, Hui;Kim, You Ho;Lee, Won Young
    • Food Science and Preservation
    • /
    • v.20 no.4
    • /
    • pp.459-466
    • /
    • 2013
  • This study was carried out in order to investigate sterilization effect and to extend storage periods of the Rubus coreanus by treating with tap water (TW), electrolyzed water (EW) and aqueous chlorine dioxide ($ClO_2$). After each treatment plot was soaked with 10, 50, 100, 200 ppm in each sterilizing solution within 30 sec, each treatment was compared during the storage time at room temperature and refrigerator temperature. As results of total plate count according to temperatures and periods, the microbial sterilizing power of each treatment plot was bigger at EW and $ClO_2$ treatment plots than the TW treatment plot; however, it sharply increased on the high concentration $ClO_2$ treatment plot. Futhermore, the cold storage treatment plot had more outstanding microbial sterilizing power than the room temperature treatment plot. As a result of observing the surface of the Rubus coreanus using scanning electron microscope (SEM), no microbe was seen in EW and $ClO_2$ treatment plot. The results of measuring enzyme activity showed a more significant decrease in EW and $ClO_2$ solutions treatment plot than TW treatment plot but gradually increased with time. The contents of total polyphenol revealed similar values on each treatment. The EW and $ClO_2$ treatment of the Rubus coreanus could be considered as good methods for inhibiting microbial growth in fresh vegetables and fruit, thereby contributing to quality maintenance.

Evaluation of Raw and Calcined Eggshell for Removal of Cd2+ from Aqueous Solution

  • Kim, Youngjung;Yoo, Yerim;Kim, Min Gyeong;Choi, Jong-Ha;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.249-258
    • /
    • 2020
  • The potential use of egg shell and calcined egg shell as adsorbent was evaluated and compared to remove Cd2+ from aqueous solution. The samples were characterized using Thermogravimetry and Differential Thermal Analysis (TG/DTA), Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD), Energy Dispersive X-ray Spectrometer (EDX) and BET Surface Analyzer. The batch-type adsorption experiment was conducted by varying diverse variables such as contact time, pH, initial Cd2+ concentrations and adsorbent dosage. The results showed that, under the initial Cd2+ concentrations ranged from 25 to 200 mg g-1, the removal efficiencies of Cd2+ by egg shell powder (ESP) were decreased steadily from 96.72% to 22.89% with increase in the initial Cd2+ concentration at 2.5 g of dosage and 8 h of contact time. However, on the contrary to this, calcined egg shell powder (CESP) showed removal efficiencies above 99% regardless of initial Cd2+ concentration. The difference in the adsorption behavior of Cd2+ may be explained due to the different pH values of ESP and CESP in solution. Cd2+ seems to be efficiently removed from aqueous solution by using the CESP with a basicity nature of around pH 12. It was also observed that an optimum dosage of ESP and CESP for nearly complete removal of Cd2+ from aqueous solution is approximately 5.0 g and 1.0 g, respectively. Consequently, Cd2+ is more favorably adsorbed on CESP than ESP in the studied conditions. Adsorption data were applied by the pseudo-first-order and pseudo-second-order kinetics models and Freundlich and Langmuir isotherm models, respectively. With regard to adsorption kinetics tests, the pseudo-second-order kinetics was more suitable for ESP and CESP. The adsorption pattern of Cd2+ by ESP was better fitted to Langmuir isotherm model. However, by contrast with ESP, CESP was described by Freundlich isotherm model well.

Effect of Alkali and Heat Treatments of Ti-6Al-4V Alloy on the Precipitation of Calcium Phosphate (Ti-6Al-4V 합금의 알칼리 및 열처리가 인산칼슘 침착에 미치는 영향)

  • Park, Jae-Han;Lim, Ki-Jung;Kim, Sang-Mok;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.187-203
    • /
    • 2000
  • The precipitation of calcium phosphate on implant surface has been known to accelerate osseointegration and to enhance osseous adaptation. The present study was performed to examine whether the precipitation of calcium phosphate on Ti-6Al-4V alloy could be affected by the immersion in NaOH solution and heat treatment. Ti-6Al-4V alloy plates of $15{\times}3.5{\times}1mm$ in dimension were polished sequentially from #240 to #2,000 emery paper and one surface of each specimen was additionally polished with $0.1{\mu}m$ alumina paste. Polished specimens were soaked in various concentrations of NaOH solution(0.1, 1.0, 3.0, 5.0, 7.0, 10.0 M) at $60^{\circ}C$ for 24 hours for alkali treatment, and 5.0 M NaOH treated specimens were heated for 1 hour at each temperature of 400, 500, 600, 700, $800^{\circ}C$. After the alkali and heat treatments, specimens were soaked in the Hank's solution with pH 7.4 at $36.5^{\circ}C$ for 30days.The surface ingredient change of Ti-6Al-4V alloy was evaluated by thin-film X-ray diffractometer(TF-XRD) and the surface microstructure was observed by scanning electron microscope(SEM), and the elements of surface were analyzed by X-ray photoelectron spectroscopy(XPS). The results were obtained as follows ; 1. The precipitation of calcium phosphate on Ti-6Al-4V alloy was accelerated by the immersion in NaOH solution and heat treatment. 2. In Alkali treatment for the precipitation of calcium phosphate on Ti-6Al-4V alloy, the optimal concentration of NaOH solution was 5.0 M. 3. In heat treatment after alkali treatment in 5.0 M NaOH solution, the crystal formation on alloy surface was enhanced by increasing temperature. In heat treated alloys at $600^{\circ}C$, latticed structure and prominences of calcium phosphate layer were most dense. On heat treated alloy surface at the higher temperature(${\geq}700^{\circ}C$), main crystal form was titanium oxide rather than apatite. The above results suggested that the precipitation of calcium phosphate on the surface of Ti-6Al-4V alloy could be induced by alkali treatment in 5.0 M-NaOH solution and by heat treatment at $600^{\circ}C$.

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Synthesis of Silicon-Carbon by Polymer Coating and Electrochemical Properties of Si-C|Li Cell (고분자 도포를 이용한 실리콘-탄소의 합성 및 Si-C|Li Cell의 전기화학적 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay-Hyeok;Min, Byung-Chul;Choi, Im-Goo;Park, Chul-Wan;Lee, Kyeong-Jik;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of silicon powder covered by polyaniline(PAn). Physical and electrochemical properties of the Si-C composites were characterized by the particle size analysis, X-ray diffraction technique, scanning electron microscope, and electrochemical test of battery. The average particle size of the Si was increased by the coating of PAn and somewhat reduced by the carbonization to give silicone-carbon composites. XRD analysis' results were confirmed co-existence of crystalline silicon and amorphous-like carbon. SEM photos showed that the silicon particle were well covered with carbonacious materials depend on the PAn content. Si-C|Li cells were fabricated using the Si-C composites and were tested using the galvanostatic charge-discharge test. Si-C|Li cells gave better electrochemical properties than that of Si|Li cell. Si-C|Li cell using the Si-C from HCl undoped PAn Precursor showed better electrochemical properties than that from HCl doped PAn Precursor. Using the electrolyte containing FEC as an additive, the initial discharge capacity was increased. After that the galvanostatic charge-discharge test with the GISOC(gradual increasing of the state of charge) condition was carried out. Si-C(Si:PAn:50:50 wt. ratio)|Li cell showed 414 mAh/g of the reversible specific capacity, 75.7% of IIE(initial intercalation efficiency), 35.4 mAh/g of IICs(surface irreversible specific capacity).

Properties of ZnO nanostructures by metal deposited on Si substrates (Metal 증착한 Si 기판 상의 ZnO 나노 구조 특성)

  • Jang, Hyeon-Gyeong;Jung, Mi-Na;Park, Seung-Hwan;Shin, Dae-Hyeon;Yang, Min;Yao, Takafumi;Chang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1034-1037
    • /
    • 2005
  • The variation of shapes and related properties of ZnO nanostructures grown on the metal pattern and Si substrate have been investigated. Ni, Cr metal patterns were formed on Si (111) substrates by e-beam evaporation, and ZnO nanostructures were fabricated on it by using thermal evaporation of Zn powder in air. Growth temperature was controlled from 500 $^{\circ}$C to 700 $^{\circ}$C. When the growth temperature was relatively low, no considerable effect was found. However, UV emission intensity decreased, and Green-emission intensity, which is regarded as originated from the defect state in the ZnO nanostructure, increased as growth temperature increase. Also, the variation of nanostructure shape at high temperature (700 $^{\circ}$C) is understood in terms of the enhanced incorporation of metal vapor during the nanostructure formation.

  • PDF

Fabrication of Electrospun Juniperus Chinensis Extracts loaded PVA Nanofibers (향나무 추출물을 함유하는 PVA 나노섬유 제조)

  • Kim, Jeong-Hwa;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.2
    • /
    • pp.35-42
    • /
    • 2016
  • Electrospinning is a simple and effective process for producing nanofiber with diameter range from nanometers to micrometers which have high specific surface area. Hence, medicated nanofibers can be readily fabricated using a solution containing a mixture of a plant-extracts and a polymer. It has proved that Juniperus Chinensis can be effectively used for the prevention of UV and SLS-induced advers skin reaction such as radical production, inflammation and skin cell damage. It also found that Juniperus Chinensis has efficient ingredient of antifungal activity and house dust mite repellent effect. The fabrication of PVA nanofibers containing Juniperus Chinensis extracts by electrospinning has been studied. PVA/Juniperus Chinensis extracts composite nanofibers were produced at different Juniperus Chinensis concentrations (0.25, 0.5, 1.5 wt. %). The parameters of electrospinning including polymer contents, voltage and tip-to-collector distance (TCD) were optimized for fabrication process. The study show that 12 wt. % PVA, 10kV applied voltage and TCD 10~20 cm are the best condition to obtain uniform PVA/Juniperus Chinensis extracts composite nanofibers. Morphologies of the electrospun composite nanofiber were observed by using a field emission scanning electron microscope. It has been found that the average diameters of fibers increased by the adding of Juniperus Chinensis extracts. As the results, PVA/Juniperus Chinensis extracts composite nanofibers having a diameter in the range from 310~360 nm were successfully prepared via an electrospinning.

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

MICROTENSILE BOND STRENGTH OF SELF-ETCHING AND SELF-ADHESIVE RESIN CEMENTS TO DENTIN AND INDIRECT COMPOSITE RESIN (간접 복합레진 합착 시 자가부식형과 자가접착형 레진시멘트의 상아질에 대한 미세인장 결합강도)

  • Park, Jae-Gu;Cho, Young-Gon;Kim, Il-Sin
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.106-115
    • /
    • 2010
  • The purpose of this study was to evaluate the microtensile bond strength (${\mu}TBS$), failure modes and bonding interfaces of self-etching and three self-adhesive resin cements to dentin and indirect composite resin. Cylindrical composite blocks (Tescera, Bisco Inc.) were luted with resin cements (PA: Panavia F 2.0, Kuraray Medical Inc., RE: RelyX Unicem Clicker, 3M ESPE., MA: Maxem, Kerr Co., BI: BisCem, Bisco Inc.) on the prepared occlusal dentin surfaces of 20 extracted molars. After storage in distilled water for 24 h, $1.0\;mm\;{\times}\;1.0\;mm$ composite-dentin beams were prepared. ${\mu}TBS$ was tested at a cross-head speed of 0.5 mm/min. Data were analyzed with one-way ANOVA and Tukey's HSD test. Dentin sides of all fractured specimens and interfaces of resin cements-dentin or resin cements-composite were examined at FESEM (Field Emission-Scanning Electron Microscope). In conclusion, PA and RE showed higher bond strength and closer adaptation than MA and BI when indirect composite blocks were luted to dentin using a self-etching and three self-adhesive resin cements.