DOI QR코드

DOI QR Code

Fabrication of Electrospun Juniperus Chinensis Extracts loaded PVA Nanofibers

향나무 추출물을 함유하는 PVA 나노섬유 제조

  • Kim, Jeong-Hwa (Department of Clothing and Textiles, Chungnam National University) ;
  • Lee, Jung-Soon (Department of Clothing and Textiles, Chungnam National University)
  • 김정화 (충남대학교 생활과학대학 의류학과) ;
  • 이정순 (충남대학교 생활과학대학 의류학과)
  • Received : 2015.12.17
  • Accepted : 2016.05.02
  • Published : 2016.06.30

Abstract

Electrospinning is a simple and effective process for producing nanofiber with diameter range from nanometers to micrometers which have high specific surface area. Hence, medicated nanofibers can be readily fabricated using a solution containing a mixture of a plant-extracts and a polymer. It has proved that Juniperus Chinensis can be effectively used for the prevention of UV and SLS-induced advers skin reaction such as radical production, inflammation and skin cell damage. It also found that Juniperus Chinensis has efficient ingredient of antifungal activity and house dust mite repellent effect. The fabrication of PVA nanofibers containing Juniperus Chinensis extracts by electrospinning has been studied. PVA/Juniperus Chinensis extracts composite nanofibers were produced at different Juniperus Chinensis concentrations (0.25, 0.5, 1.5 wt. %). The parameters of electrospinning including polymer contents, voltage and tip-to-collector distance (TCD) were optimized for fabrication process. The study show that 12 wt. % PVA, 10kV applied voltage and TCD 10~20 cm are the best condition to obtain uniform PVA/Juniperus Chinensis extracts composite nanofibers. Morphologies of the electrospun composite nanofiber were observed by using a field emission scanning electron microscope. It has been found that the average diameters of fibers increased by the adding of Juniperus Chinensis extracts. As the results, PVA/Juniperus Chinensis extracts composite nanofibers having a diameter in the range from 310~360 nm were successfully prepared via an electrospinning.

전기방사는 높은 비표면적을 가지는 마이크로~나노 단위 직경의 나노섬유를 생산하는 간단하고 효율적인 공정이다. 따라서 식물 추출물과 폴리머를 혼합한 방사용액으로 손쉽게 의료용 나노섬유의 제조가 가능하다. 향나무는 라디칼 생성, 화상, 세포손상과 같은 자외선과 SLS에 의한 피부손상을 방지하는데 효과적이라고 알려져 있다. 또한 방미효과와 함께 집먼지 진드기 방지 효과가 보고된 바 있다. 전기방사로 향나무 추출물을 함유하여 제조한 PVA 나노섬유를 연구하였다. 향나무 추출물의 서로 다른 농도(0.25, 0.5, 1.5 wt. %)를 함유하는 PVA/향나무 추출물 나노 복합섬유를 제조하였으며 방사용액의 농도, 인가전압, TCD 등의 전기방사 조건을 최적화 하였다. 연구결과 균일한 PVA/향나무 추출물 나노 복합섬유을 얻을 수 있는 최적 조건으로 PVA 농도는 12wt%, 인가전압은 10 Kv, TCD는 10~20 cm로 나타나났다. 제조된 전기방사 나노 복합섬유의 형태 및 미세구조를 SEM을 통해 관찰하였다. 향나무 추출물의 첨가에 의해 나노섬유의 직경이 증가하는 것으로 나타났다. 결과적으로 310~360 nm의 직경범위를 가지는 PVA/향나무 추출물 복합 나노섬유가 전기방사를 통해 성공적으로 얻어졌다.

Keywords

References

  1. Alipour, S. M., Nouri, M., Mokhtari, J., & Bahrami, S. H. (2009). Electrospinning of poly (vinyl alcohol)-water-soluble quaternizes chitosan derivative blend. Carbohydrate Research, 344(18), 2496-2501. https://doi.org/10.1016/j.carres.2009.10.004
  2. Cimanga, K., Kambu, K., Toga, L., Apers, S., Bruyne, T., Hermans, N., Totte, J., Pieters, L., & Vlietinck, A. J. (2002). Correlation between chemical composition and antibacterial activity of essential oils of aromatic medical plants growing in the Democratic Republic of Congo. J. Ethnopharmacol, 79(2), 213-220. https://doi.org/10.1016/S0378-8741(01)00384-1
  3. Charensriwilaiwat, N., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., & Supaphol, P. (2010). Preparation and characterization of chitosan -hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate polymers, 81(3), 675-680. https://doi.org/10.1016/j.carbpol.2010.03.031
  4. Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textile. Polymer, 42(1), 261-272. https://doi.org/10.1016/S0032-3861(00)00250-0
  5. Doshi, J. & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
  6. Gunn, J., & Zhang, M. Q. (2010). Polybend nanofibers for biomedical applications: Perspectives and challenges. Trends in Biotecnology, 28(4), 189-197. https://doi.org/10.1016/j.tibtech.2009.12.006
  7. Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. https://doi.org/10.1016/S0266-3538(03)00178-7
  8. Ignatova, M., Manolova, N., & Rashkov, I. (2007). Novel antibacterial fibers of quaternized chitosan and poly (vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal, 43(4), 1112-1122. https://doi.org/10.1016/j.eurpolymj.2007.01.012
  9. Jang, Y. & Lee, J. (2010). Mechanical properties and sensibility of Tencel Jacquard fabrics treated with Ginkgo biloba extract and silicon softener. Sci. Emot. Sensib, 13(2), 327-336.
  10. Jia, Z. D., Li, Q., Liu, J. N., Yang, Y., Wang, L. M., & Guan, Z. C. (2008). Preparation and properties of poly (vinyl alcohol) nanofibers by electrospinning. Journal of polymer Engineering, 28(1/2), 87-100. https://doi.org/10.1515/POLYENG.2008.28.1-2.87
  11. Jung, J. Y., Kim, J. W., Kim, Y. S., Park, H. M., Lee, B. H., Choi, M. S., & Yang, J. K. (2011). Antifungal activity of extracts from Chamaecyparis obtusa and Pseudotsuga menziesii against Trichoderma spp. Journal of Agriculture & Life Science, 45(4), 1-11.
  12. Kim, C. N., Xing, Z. C., Baek, J. Y., Bae, H. S., & Kang, I. K. (2009). Preparation of antibacterial nanofibrous PMMA nonwoven fabrics. Polymer, 33(5), 429-434.
  13. Kim, J. H., Park, S. M., Sim, G. S., Lee, B. H., & Pyo, H. B. (2004). Protection of UV-derived Skin Cell Damage and Anti-irritation Effect of Juniperus chinensis Xylem Extract. Journal of Society Cosmetic Scientists, 30(1), 63-71.
  14. Kim, Y. J., Kim, S. N., Kwon, O. K., Park, M. R., Kang, I. K., & Lee, S. G. (2009). Preparation and characterization of electrospun nanofibers containing natural antimicrobials. Polymer, 33(4), 307-312.
  15. Kneawy, E. R., & Abdel-Fattah, Y. R. (2002). Antimicrobial properties of modified and electrospun poly (vunl phenol). Macromolecular Bioscience, 2(6), 261-266. https://doi.org/10.1002/1616-5195(200208)2:6<261::AID-MABI261>3.0.CO;2-2
  16. Koombhongse, S., Liu, W. X., & Reneker, D. H. (2001). Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science: Part B: Polymer Physics, 39(21), 2598-2606. https://doi.org/10.1002/polb.10015
  17. Kuo, Y. H. & Shiu, L. L. (1996). Two New Sesquiterpenes, 12-hydroxy-alpha-longipinene and 15-hydroxyacora-4 (14), 8-diene, from the heartwood of Juniperus-Chinensis linn var Tsukusiensis Masam.. Chemical and Pharmaceutical Bulletin, 44(9), 1758-1760. https://doi.org/10.1248/cpb.44.1758
  18. Lee, H. J., Hong, T. M., Lim, S. C., Won, J. S., & Lee, S. G. (2015). Preparation and characterization of PVDF/PU biocomponent nanofiber by electrospinning. Textile Science and Engineering, 52(2), 88-96. https://doi.org/10.12772/TSE.2015.52.088
  19. Lee, S. Y., Lee, S. B., Kim, Y. K., & Hwang, S. J. (2006). Biological control of galic acid white rot accused by Sclereotium cepivorum and Sclereotium sp. using Bacillus subtilis 122 and Trichoderma harzianum 23. Res. Plant Dis. 12(2), 81-84. https://doi.org/10.5423/RPD.2006.12.2.081
  20. Li, W. J., Laurencin, C. T., Carterson, E. J., Tuan, R. S., & Ko, F. K. (2002). A novel scaffold for tissue engineering. J Biomed Master Res., 60(4), 613-621. https://doi.org/10.1002/jbm.10167
  21. Liu, F., Nishikawa, T., Shimizu, W., Sato, T., Usami, H., Amiya, S., Ni, Q. Q., & Murakami, Y. (2012). Preparation and fully hydroged polyvinyl alcohol electrospun nanofibers with diameters of sub-200nm by viscosity control. Textile Research Journal, 82 (16), 1635-1644. https://doi.org/10.1177/0040517512436833
  22. Manohar, V., Ingram, C., Gray, J., Talpur, N. A., Echard, B. W., Bagchi, B., & Preuss, H. G. (2001). Antifungal activities of origanum oil against Candida albicans. Mol. Cell. Biochem, 228(1-2), 111-117. https://doi.org/10.1023/A:1013311632207
  23. Megelski, S., Stephens, J. S., Rabolt, J. F., & Bruce, C. D. (2002). Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456-8466. https://doi.org/10.1021/ma020444a
  24. Nam, K. Y. & Lee, J. S. (2013). Dyeing properties and functionality of methanol extract from Juniperus Chinensis Heartwood. Textile Coloration and Finishing, 25(3), 194-205. https://doi.org/10.5764/TCF.2013.25.3.194
  25. Qin, X. H., & Wang, S. Y. (2008). Electrospun nanofibers from crosslinked poly (vinyl alcohol) and its filtration efficiency. J Appl Polym Sci, 109(2), 951-956. https://doi.org/10.1002/app.28003
  26. Ren, G. L., Xu, X. H., Liu, Q., Cheng, J., Yuan, X. Y., Wu, L. L., & Wan, Y. Z. (2006). Electrospun poly (vinyl alcohol)/ glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym, 66(12), 1559-1564. https://doi.org/10.1016/j.reactfunctpolym.2006.05.005
  27. Reneker, D. H. & Chun, I. (1996). Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnology, 7(3), 216-223. https://doi.org/10.1088/0957-4484/7/3/009
  28. Satapathy, S., Pawar, Gupta, P. K., & Varma, K. B. R. (2011). Effect of annealing on phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci., 34(4), 727-733. https://doi.org/10.1007/s12034-011-0187-0
  29. Schreuder-Gibson, H. L., Gibson, P., Senecal, K., Sennett, M., Walker, J., Yeomans, W., et al. (2002) Protective textile materials based on electrospun nanofibers. Journal of Advanced Materials, 34(3), 44-55.
  30. Yen, T., Chang, H., Hsieh, C., & Chang, S. (2008). Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. fomosana (Florin) heartwood Bioresour. Technol, 99(11), 4871-4877.
  31. Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16), 4403-4412. https://doi.org/10.1016/S0032-3861(02)00275-6