• Title/Summary/Keyword: SEM/EDS analysis

Search Result 519, Processing Time 0.029 seconds

Characteristics of the Copper Mineralization in Tsogttsetsii Area, Mongolia (몽골 촉트체치 지역의 동 광화작용 특성)

  • Davaasuren, Otgon-Erdene;Lee, Bum Han;Kim, In Joon;Ryoo, Chung-Ryul;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Tsogttsetsii area, an intrusive complex associated with Cu porphyry mineralization, is located in the Gurvansaikhan island arc terrane of the Central Asian Orogenic belt, Southern Mongolia. We performed a reconnaissance survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Permian. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and Scanning electron microscopy-Energy dispersive spectroscopy (SEM-EDS). Ore minerals identified in polarizing microscope are magnetite, pyrite and bornite. Propylitic alteration zone occurs broadly in the area where malachite occurrences are shown to be spread intensively in alkali granite area. Quartz, sericite, chlorite and epidote were observed in the alteration zone samples. As results of XRD and SEM-EDS analysis, samples of copper oxides were composed mainly of malachite, cuprite and small amounts of quartz. Average and maximum Cu contents of samples collected from malachite occurrences area are 759 ppm and 6190 ppm, respectively. The characteristics of mineralization in Tsogttsetsii area is similar to Oyu Tolgoi Cu-Au (Mo) deposit and Tsagaan Suvarga Cu-Mo deposit which are 56 km south and 120 km northeast from Tsogttsetsii area, respectively. Characteristics of the study area, such as the geology, tectonic environment, lithology, mineralization, and alterations of the rocks within the survey area, resemble the characteristics of other porphyry deposits. Therefore further exploration including Induced Polarization (IP) survey for identifying subsurface orebody is required.

Ammonia Adsorption Capacity of Zeolite X with Different Cations (Zeolite X의 양이온에 따른 암모니아 흡착 성능 연구)

  • Park, Joonwoo;Seo, Youngjoo;Ryu, Seung Hyeong;Kim, Shin Dong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.355-359
    • /
    • 2017
  • Zeolite X with Si/Al molar ratio = 1.08~1.20 was produced using a hydrothermal synthesis method. Ion-exchanged zeolite X samples were then prepared by using metal nitrate solutions containing $Mg^{2+}$ or $Cu^{2+}$. For all zeolite X samples, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to identify the change in crystal structure. The analysis of ammonia adsorption capability of zeolite X samples was conducted through the ammonia temperature-programmed desorption ($NH_3$-TPD) method. From XRD results, the prepared zeolite X samples maintained the Faujasite (FAU) structure regardless of cation contents in zeolite X, but the crystallinity of zeolite X containing $Mg^{2+}$ and $Cu^{2+}$ cations decreased. The distribution of cation contents in zeolite X was identified via EDS analysis. $NH_3$-TPD analysis showed that the $NH_3$ adsorption capacity of $Mg^{2+}$- and $Cu^{2+}$-zeolite X were 1.76 mmol/g and 2.35 mmol/g, respectively while the $Na^+$-zeolite X was 3.52 mmol/g ($NH_3/catalyst$). $Na^+$-zeolite X can thus be utilized as an adsorbent for the removal of ammonia in future.

A Study on Analysis of J85 Engine V.G. Actuator Arm Shaft Crack

  • Hwang, Young-Ha;Son, Kyung-Sug;Kim, Tae-Gu
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.6-9
    • /
    • 2009
  • The crack in a J85 engine V.G. actuator arm shaft for a bell crank on the engine compressor was investigated. The crack was observed in twenty two shafts during the inspection of 238 shafts. The failure analysis of shaft cracks was performed by chemical composition analysis using ICP(Inductively Coupled Plasma) and by fracture surface and microstructure analysis using FE-SEM and optical microscope. The crack initiated from the top and bottom and propagated to the center along the grain boundaries. From the chemical composition analysis, the fractography of the fracture surface and the microstructure, it was found that the failure mechanism of the shafts is the inclusion-related intergranular decohesion crack. The inclusion was found out from MnS particle by EDS(Energy Dispersive Spectroscopy). The crack initiated MnS inclusion in the grain boundary and propagated with the increase of applied shear stress during long operation. In order to prevent the fracture, NDI(Nondestructive inspection) is needed periodically as recommended.

Vibration Damping Ratio Performance Evaluation According to the Polymer Mixing Rate of SBR-based Polymer Modified Mortar through Ultrasonic Pulse Analysis (초음파 펄스 분석을 통한 SBR계 폴리머 혼입 모르타르의 폴리머 혼입률에 따른 진 동감쇠비 성능 평가)

  • Jeong, Min-Goo;Jang, Jong-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2022
  • The mechanical performance and vibration damping ratio performance of a specimen according to the polymer mixing rate were evaluated for polymer modified mortar. As a polymer, Styrene Butadiene Rubber(SBR) liquid polymer with a solid content of about 49~51% was used, and the polymer content was increased by liquid 5%. The specimen was 40*40*160(mm), and after curing, compressive strength, flexural strength, and vibration damping ratio were measured using the ultrasonic pulse method. As a result, it was found that the compressive strength decreased as the polymer was mixed, but the flexural strength was increased. The vibration damping ratio increased by 11% at 5% polymer, 28% at 10% polymer, 33% at 15% polymer, and 72 at 20% polymer. I was found that the incorporation of the polymer was very effective to reduce the vibration of the mortar. In addition, through SEM and SEM-EDS analysis, it is determined that the cause of vibration reduction due to polymer mixing is that the polymer film formed in the transition zone of aggregate and internal voids buffered the vibration of the mortar inside. Taken together, in the scope of this study, the appropriate polymer mixing ratio for reducing the vibration of mortar is judged to be about 7.5%.

A Study on the Improvement of the Electrical Stability Versus MgO Addictive for ZnO Ceramic Varistors (MgO 첨가에 따른 ZnO 세라믹 바리스터의 신뢰성 향상에 관한 연구)

  • 소순진;김영진;송민종;박복기;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.427-430
    • /
    • 2001
  • The degradation characteristics versus MgO Additive for the ZnO ceramic devices fabricated by the standard ceramic techniques is investigated in this study. It were made these devices be basic Matsuoka's composition. Especially, MgO were added to analyze the degradation characteristics and sintered in air at 1300$^{\circ}C$. The conditions of DC degradation test were 115${\pm}$2$^{\circ}C$ for 12h. Using XRD and SEM, the phase and microstructure of samples were analyzed respectively. The elemental analysis in the microstructures was used by EDS, E-J analysis was used to determine ${\alpha}$ . Frequency analysis was accomplished to understand the relationship between R$\sub$g/ and $R_{b}$ with the electric stress at the equivalent circuit.

  • PDF

A Study on the Corrosion Characteristics of a Metal Surface by Laser-Induced Breakdown Spectroscopy (레이저 유도 플라즈마 분광분석법을 적용한 금속표면의 부식 특성에 관한 연구)

  • Kang, Dongchan;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • The corrosion of metal specimens was analyzed in this study using laser-induced breakdown spectroscopy. The samples used in the study were magnesium alloys and corrosion, and standard specimens were prepared and analyzed using surface and depth analysis. The spectral wavelengths used in the oxide layer analysis were 777.196 nm, 777.421 nm, and 777.543 nm. The spectral line of the surface corrosion was confirmed by experimentation, and surface micro morphology analysis was performed using an optical microscope. Approximately $100{\mu}m$ corrosion depth was confirmed via laser irradiation in the depth direction. The results of laser-induced breakdown spectroscopy and the SEM-EDS analysis were compared and analyzed.

A Study on the Improvement of the Electrical Stability Versus MgO Additive for ZnO Ceramic Varistors (MgO 첨가에 따른 ZnO 세라믹 바리스터의 안정성 향상에 관한 연구)

  • 소순진;김영진;박춘배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.398-405
    • /
    • 2002
  • The degradation characteristics of MgO additive for the ZnO ceramic devices fabricated by the standard ceramic techniques are investigated in this study. These devices were made from basic Matsuoka's composition. Especially, MgO was added to analyze the degradation characteristics and devices were sintered in air at $1200^{\circ}C$. The conditions of DC degradation test were $115\pm2^{\circ}C$ for 12h. Using XRD and SEM, the phase and microstructure of samples were analyzed, respectively. The elemental analysis in the microstructures was performed by EDS, E-J analysis was used to determine $\alpha$. Frequency analysis was accomplished to understand the relationship between $R_G$ and $R_B$ with the electric stress at the equivalent circuit.

Antimicrobial Properties and Characteristic Changes of Nylon Treated with Glycidyltrimethylammonium chloride(GTAC) and Silver nanoparticles(AgNPs) (Glycidyltrimethylammonium chloride(GTAC)와 Ag 나노입자 가 코팅된 나일론의 항균성 및 특성변화)

  • Kang, Dakyung;Lee, Jaewoong;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • This study deals with antibacterial properties of nylon fiber treated with glycidyltrimethylammonium chloride(GTAC) and silver nanoparticles(AgNPs). Nylon fibers were soaked into GTAC(2-30%, v:v) solution for 20 min. After sample was pre-drying at $80^{\circ}C$ for 10min and cured at $180^{\circ}C$ for 5min. The AgNPs coating was accomplished by soaking in silver colloid solution at $45^{\circ}C$ for 90min. The coated nylon fibers were characterized by scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS). EDS analysis indicated that AgNPs and GTAC was attached on nylon fibers. The treated nylon fibers showed antimicrobial properties against Escherichia coli(ATCC 43895), Pseudomonas aeruginosa(ATCC 13388) and Staphylococcus aureus(ATCCBAA-1707).

The Reaction of Internal Electrodes with Bi$_2$O$_3$ in Multilayer ZnO Varistor (적층형 ZnO바리스터의 내부전극과 Bi$_2$O$_3$ 와의 반응)

  • Kim, Young-Jung;Kim, Hwan;Hong, Kook-Sun;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1121-1129
    • /
    • 1998
  • Reactions between Ag-Pd internal electrode materials and{{{{ { {Bi }_{2 }O }_{3 } }} in multilayer chip varistor were in-vestigated. For more than 1 mol%{{{{ { {Bi }_{2 }O }_{3 } }} in varistor composition internal electrode structure was destroyed due to the reaction between internal electrode and{{{{ { {Bi }_{2 }O }_{3 } }} But for typical varistor compositions (below 1 mol% of{{{{ { {Bi }_{2 }O }_{3 } }} content) microstructural changes around the internal electrode were not observed. However SEM-EDS and TEM-EDS analysis showed the uneven distribution of{{{{ { {Bi }_{2 }O }_{3 } }} in the internal electrode which was due to the migration of{{{{ { {Bi }_{2 }O }_{3 } }} to the electorde during sintering. As a results the nonlinear coefficient of multilayer varistor showed very large distribution as well as the breakdown voltage.

  • PDF

Effect of Mechanical Polishing Pretreatment on Tribological Properties of Manganese Phosphate Coating of Carbon Steel (기계적 연마 전처리가 인산망간 피막의 윤활 특성에 미치는 영향)

  • Kim, Ho-Young;Noh, Young-Tai;Jeon, Jun-Hyuck;Kang, Ho-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.350-356
    • /
    • 2019
  • In this study, the effect of mechanical polishing of carbon steel on the tribological properties of manganese phosphate coating on carbon steel has investigated. The microstructure, surface morphology and chemical composition were analyzed by SEM, EDS, and XRD. The surface roughness test was carried out in order to calculate Rvk value by 3D laser microscopy. Also, the tribology property of manganese phosphate coating was tested by ball-on disk. In the results of EDS analysis, coating layer consists of elements such in Mn, P, Fe, and O. XRD showed that (Mn,Fe)5H2(PO4)4·4H2O in manganese phosphate coating layer was formed by the chemical reaction between manganese phosphate and elements in carbon steel. As the mechanical polishing degree increased, the friction coefficient was reduced. The rougher the mechanical polishing degree, the better corrosion resistance was obtained.