International Journal of Aeronautical and Space Sciences
/
제11권4호
/
pp.247-265
/
2010
Multi-objective design exploration (MODE) and its applications are reviewed as an attempt to utilize numerical simulation in aerospace engineering design. MODE reveals the structure of the design space based on trade-off information. A self-organizing map (SOM) is incorporated into MODE as a visual data mining tool for the design space. SOM divides the design space into clusters with specific design features. This article reviews existing visual data mining techniques applied to engineering problems. Then, we discuss three applications of MODE: multidisciplinary design optimization for a regional-jet wing, silent supersonic technology demonstrator and centrifugal diffusers.
본 연구는 인공신경망(Artificial Neural Networks: ANNs)기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론을 이용한다. 자기조직화 특성을 이용하여 스스로 학습이 가능하고, 구조상 수행이 빨라 학습 단계에 소요되는 시간을 줄 일 수 있는 장점을 가진 자기조직화 이론을 도입하고, 수질자료 중 전체 유기물의 양을 나타내며 난분해성 물질에 대한 해석이 가능하고 재현성이 탁월한 TOC 와 강우-유출량 자료의 분포적 양상과 특징을 분석하여 예측을 위한 모형화 과정에 기여하고자 한다. 최적의 Map Size와 Map Array 결정을 위해 수집된 강우와 유출량자료 및 TOC 자료에 대해 Garcia의 경험식을 이용하여 Map을 구성하는 단위구조의 총 수(M)를 산정하여 M값에 따른 종방향 및 횡방향 크기를 결정하는 다수의 Map 크기를 검토하고, 또한 Map 배열은 2차원 배열의 사각형배열(Rectangular array)과 육각형배열(Hexagonal array)에 대해서도 복합적으로 검토하여 최적의 특성조건을 결정하여 강우-유출 및 TOC 관계의 분할특성을 분석한다.
일반적으로 변압기의 고장진단을 위해 IEC 코드법이 사용되지만, 이 방법은 가스비율이 규정된 범위 내에 존재하지 않거나 경계조건에 있는 경우 숙련된 진단 전문가에게 의뢰하지 않고는 정확한 고장의 원인을 판정하는데 어려움이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 SOM을 이용한 전력용 변압기의 고장진단 알고리즘을 제안한다. 제안된 방법은 훈련 데이터의 경쟁학습을 통하여 자기 구성 맵을 구축한 후, 실증 데이터를 구축된 맵에 적용하여 고장의 진단이 이루어진다. 또한 클러스터링 기법에 의해 구축된 정상/고장모델과 정상 데이터를 비교함으로써 고장의 추이 및 열화정도를 분석한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해 향상된 진단결과를 보임을 확인할 수 있었다.
네트워크 기반의 공격은 그 위험성과 피해의 규모가 크기 때문에 공격 초기에 빨리 탐지하는 것이 중요하다. 그러나 지도학습 데이터 마이닝을 이용한 네트워크상의 비정상 트래픽을 탐지하는 방법은 방대한 양의 데이터 전처리와 관리자의 분석이 요구되며 관리자의 분석이 정확하다는 보장이 없을 뿐만 아니라 각 네트워크의 실시간 특성을 고려하지 못하기 때문에 탐지의 어려움이 크다. 본 논문에서는 실시간 침입 탐지와 점진적 학습을 위해 비지도학습의 데이터마이닝 기법중 하나인 자기 조직화 지도를 기반으로 트래픽 속성 상관관계 메커니즘을 제안한다. 이는 세 단계로 이루어진다. 첫 번째 단계는 초기 학습이 이루어지는 단계로 비지도 학습을 통하여 성격이 비슷한 트래픽끼리 클러스터링 한 맵을 생성시킨다. 두 번째 단계는 맵의 각 클러스터가 정상과 비정상 트래픽의 클러스터로 구분되기 위해 각 공격별로 추출된 규칙(rule)을 적용하여 맵을 분석한다. 이 규칙은 지도 학습을 통한 규칙 기반의 방법으로, 각 데이터 항목마다 SOM을 이용한 속성별 맵의 상관관계(correlation) 분석을 통해 생성되었다. 마지막으로 분석된 맵을 이용하여 실시간 탐지와 함께 점진적 학습이 이루어지게 된다. 여러 실험을 통하여 비지도 학습과 지도 학습을 결합한 SOM 기반 트래픽 속성 상관관계 메커니즘이 지도 학습에 비해 실시간 탐지에 우수함을 증명하였다.
본 연구에서는 2005년에서 2010년까지의 통계청 남성암 유형별 연령표준화 시군구 사망률 데이터에 대해 자기조직화지도와 GIS를 이용한 탐구적 자료 분석을 수행하여 이들 데이터에 의미 있는 패턴이 내재되어 있는지 분석하였다. 그리고 지역의 사회경제적 수준을 대표하는 변수로 선정된 지역별 가구주의 교육수준과 분석된 패턴이 어떤 관련이 있는지 검토하였다. 분석결과 우리나라 시군구는 남성암 사망원인 측면에서 독특한 특성을 가진 18개의 지역 군집으로 구분될 수 있으며, 이들 군집 내 속한 시군구가 공간적으로도 군집되는 경향이 있음을 보여주었다. 또한 가구주의 교육수준이 높은 군집이 낮은 군집에 비해 남성암 사망률이 낮은 경향을 보이지만 일부 암의 경우 교육수준이 높은 군집에서 사망률이 높음을 보여주었다. 이 결과는 지역의 사회경제적 요인, 자연환경적 요인 등 암의 발생 및 관리에 영향을 미치는 지역적 요인에 양의 공간적 자기상관이 존재하며, 이러한 공간적 자기상관이 다양한 유형의 암 원인 사망에 영향을 미친 결과로 해석되어질 수 있다. 또한 18개의 군집 중 서울의 강남구 및 서초구를 포함한 군집은 대부분 유형의 암 원인 사망률에서 전체 18개 군집 중 하위 수준임을 보여 우리나라 암의 예방, 발생, 관리와 관련된 중요원인이 사회경제적 요인일 수 있음을 암시하였다.
국내 습지의 가치와 등급을 평가하고 적용방안을 고찰하기 위해, 경상남도에 위치한 146개 습지를 대상으로 신속평가방법 (Rapid Assessment Method)을 이용한 습지평가를 수행하였다. 각 습지에서 평가된 8개 대항목과 주변 피복 비율 간 관계를 분석하기 위해 Self-Organizing Map(SOM) 알고리즘을 이용하여 패턴분석을 실시하였다. 총 8개의 항목 중, '식생다양성 야생동물 서식처'와 '미적 레크레이션' 항목 점수가 가장 높았으며, 대부분 2~3등급의 가치를 가지는 것으로 평가되었다. SOM 분석 결과, 식생다양성 야생동물 서식처 항목이 높은 습지에는 대부분 어류 양서 파충류 서식처 항목이 낮은 성향을 보였는데, 이는 어류 등은 식생다양성이 높은 지역을 선호하지 않기 때문인 것으로 사료된다. 습지 내 수생식물의 높은 풍부도는 미적인 부분을 충족시키기 때문에 미적 레크레이션 점수가 높은 습지는 대부분 식생다양성 야생동물 서식처가 높았다. 또한, 침식조절 기능의 경우 홍수 저장 조절 기능과 밀접하게 관련되며, 침식조절 기능이 높은 습지는 홍수 저장 조절 기능 또한 높은 경향을 가진다. 국내 습지에 신속평가방법을 적용한 결과, 일부 항목이 국내 습지 특성이나 범위에 맞지 않아 개선이 요구되며, 습지 보전 측면에서 '접근성'이나 '시각적 개방성' 등 항목들은 점수 체제의 전환이 필요한 것으로 나타났다. 따라서 신속평가방법을 국내 습지에 적용하기 위해서는 항목 내 평가기준의 조정 혹은 세분화, 현실화가 필요한 것으로 판단된다. 향후 신속평가방법을 이용한 등급화는 습지의 보전이나 관리 방안 마련에 중요한 지표로서 활용될 수 있으며, 잔존하는 습지를 보존하여 멸종위기종 등 생물상 유지에 크게 기여할 수 있을 것으로 사료된다.
낙동강 수계의 20개 저수지 및 습지에서 환경요인에 대한 동물플랑크톤 군집의 영향을 평가하기 위해 계절별 조사를 수행하였으며 다양한 환경 요인에 대한 동물플랑크톤의 영향을 효과적으로 분석하기 위해 Self-Organizing Map(SOM) 분석을 이용하였다. 총 109종의 동물플랑크톤 종이 동정되었으며, 동물플랑크톤의 밀도와 종수는 계절에 따라 상이한 분포를 나타냈다. 특히, 가을은 다른 계절보다 동물플랑크톤의 높은 종수와 밀도를 기록하였다(98종, 603 ind. /L). 윤충류는 다른 환경요소보다 수온과 밀접하게 연관되었으며, 이는 계절에 따른 영향을 크게 받는 것으로 보인다. 지각류와 요각류는 전기전도도, Chl. a, 영양염류(TN, TP) 대해서 영향 받았으며, 이는 오염원 및 먹이원에 영향을 크게 받는 것으로 보인다. 그러나, 용존산소가 높은 정수역에서는 대부분 동물플랑크톤이 낮은 밀도를 보였다. 저수지 및 습지에서 출현하는 동물플랑크톤 군집은 수온이나 영양염류 등의 환경요인에 대해 주로 영향 받는 것으로 평가되었다. 결론적으로 저수지와 습지와 같은 정수역에서 출현하는 동물플랑크톤 군집의 조성 및 밀도는 환경요인과 밀접하게 연관되는 것으로 나타났으며, 환경요인의 변화는 동물플랑크톤의 계절성을 결정하는 중요한 요인인 것으로 평가되었다.
화석 연료의 무분별한 사용으로 환경이 심각하게 오염되고, 화석 연료의 고갈에 대한 문제가 대두됨에 따라서 화석 연료에 대한 문제를 해결 할 수 있는 대체 에너지원에 대해 관심이 집중되기 시작하였다. 현재 신재생 에너지 중에서 가장 각광을 받고 있는 에너지는 중에 하나가 풍력에너지이다. 풍력에너지 발전단지와 기존의 전력 발전소는 소비되는 전력에 대한 생산의 균형을 맞춰야하며, 풍력에너지단지에서 균형적인 생산을 하기 위해서는 풍력에너지에 대한 분석 및 예측이 필요하다. 이를 위해서 데이터마이닝 분야의 예측 기법이 활용 될 수 있다. 본 논문에서는 풍력 데이터를 이용하여 발전 패턴을 예측하기 위해 SOM(Self-Organizing Feature Map) Clustering 기법과 의사결정나무(decision tree)를 이용한 연구를 진행하였다. 즉, 1) 풍력 데이터의 누락된 데이터와 이상치 데이터를 처리하기 위하여, 전처리 과정을 수행하였고, 이 과정에서 특징 벡터를 추출하였다. 2) 전처리 단계를 거쳐 정제되고 정규화된 데이터 집합을 MIA(Mean Index Adequacy) 척도와 SOM Clustering 기법에 적용하여 대표 발전 패턴을 찾아내고 각각의 데이터에 해당하는 대표 패턴을 클래스 레이블로 할당하도록 하였다. 3) 의사결정나무 기반의 분류 기법에 데이터 집합을 적용시켜 새로운 풍력에너지에 대한 분석 및 예측 모델을 생성하였다. 실험 결과, 의사결정나무를 통한 풍력에너지 발전 패턴을 예측하기 위한 모델을 구축하였다.
내용기반 이미지 검색은 색상, 질감 등의 이미지 자체의 자질들을 이용하여 검색하므로 텍스트 기반 이미지 검색의 객관성 부족과 모든 이미지에 사람이 주석을 달아야 하는 단점을 보완할 수 있는 이미지 검색 방법이다. 이러한 내용 기반 이미지 검색에서 사용되는 방식 중 SIM(Self-organizing Image browsing Map) 방식은 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑하고 그 결과를 바탕으로 이미지를 검색하게 된다. 하지만 비슷한 이미지라 할지라도 이미지의 밝기, 피사체의 움직임 등에 의하여 색상 정보가 다르게 나타나게 되면 SOM 알고리즘의 학습 과정에서 유사한 이미지들을 그룹화한 노드를 BMU로 선택하지 못하고 떨어져 있는 다른 노드를 선택하게 된다. 이 경우 학습이 진행되면서 유사한 이미지들이 군집하는 과정을 거치지만 학습이 완료될 때까지 다른 유사 이미지들을 그룹화한 노드에 맵핑이 되지 못하는 경우가 발생한다. 그 결과, 검색 결과에 나타나지 못하여 적합 이미지 검색률이 낮아 질 수 있다. 따라서 본 논문에서는 HSV 색상모델을 이용하여 양자화하고 이미지의 색상 특징 벡터를 추출한 뒤 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑한다. 이때 SIM 방식의 문제점인 유사 이미지가 따로 맵핑되어 적합 이미지 검색률이 낮아지는 것을 줄이기 위하여 SOM을 두 개의 층으로 구성한다. 첫 번째 층에서 이미지의 색상 자질을 이용하여 학습을 완료한 후, 학습이 완료된 첫 번째 층 맵의 각 노드들의 연결 가중치를 이용하여 두 번째 층에서 다시 한번 학습을 수행한다. 두 개의 층으로 학습이 완료된 두 번째 층의 SOM에 질의 이미지의 특징 벡터를 입력하여 BMU를 선택하고 BMU와 연결된 첫 번째 층의 노드를 최종 선택하여 이미지를 검색한다. 실험결과, 제안된 이미지 검색 방법이 기존의 이미지 검색 방법 보다 적합 이미지의 검색 성공률이 높은 것을 확인 할 수 있었다.
어류 채집도구는 다양하며, 채집도구의 선택과 특성에 따라 채집되는 어류의 군집에 차이가 나타난다. 본 연구는 예당호에서 4개의 채집도구 (족대, 투망, 자망 및 삼각망)를 이용하여 어류 군집을 조사하고 비교하였다. 족대와 투망은 개체수를 채집하는 데 효율적이지 않았으나, 수변부에 서식하는 어류의 종 다양성이 높았다. 자망의 경우, 체장이 길거나 등지느러미 극조가 존재하는 어류가 주로 채집되었다. 삼각망에서는 가장 많은 개체수가 채집되었으며, 높은 종 선택성으로 인해 우점도가 높아지는 것으로 나타났다. NMDS 분석에서 족대, 투망 및 자망 간 채집되는 어류의 뚜렷한 차이가 나타났다. 비지도학습법인 Self-organizing map (SOM) 분석으로 자망에서는 체장이 큰 어류가 채집되는 반면 삼각망에서는 체장이 작은 어류가 채집되는 패턴 특성을 밝혀내었다. 채집도구에 따라 어류의 생태적인 특성과 종 다양성 효율이 다르게 나타났으며, 어류 군집조사 시 서식환경과 목적에 부합되는 채집도구를 선택할 필요성이 있다. 또한, 서식처 유형에 적합한 채집도구의 표준화로 연구자 간의 차이를 줄이는 방법의 제시가 요구된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.