• Title/Summary/Keyword: SEEDLING TREE

Search Result 186, Processing Time 0.02 seconds

Improvement of asymbiotic seed germination and seedling development of Cypripedium macranthos Sw. with organic additives

  • Huh, Yoon Sun;Lee, Joung Kwan;Nam, Sang Young;Paek, Kee Yoeup;Suh, Gang Uk
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.138-145
    • /
    • 2016
  • To find the optimal propagation condition for endangered Cypripedium macranthos Sw., also known as lady's slipper orchid, the effect of various organic additives on in vitro germination, protocorm formation and seedling growth was investigated during asymbiotic seed culture. When $100ml{\cdot}L^{-1}$ coconut water was added to the basal medium, the highest germination rate and protocorm formation rate were achieved, with 70.8% and 74.2% respectively. Supplementation of phloem sap from birch tree or maple tree also showed a facilitating effect to improve the germination and protocorm development. With $100ml{\cdot}L^{-1}$ birch sap or maple sap, both the germination and protocorm formation rates were roughly more than 65% and 68%. The roots and buds of the seedlings grew vigorously in the medium containing $100ml{\cdot}L^{-1}$ coconut water or phloem sap, in particular, their bud formation rates increased by more than 70%. Addition of banana powder and peptone could not create a more significantly favorable culture condition, and non-addition had the worst results. Our results demonstrated that proper organic amendments such as coconut water and phloem sap might be preferred to in vitro germination and the growth of seedlings developed from the protocorm of C. macranthos Sw. during asymbiotic seed culture.

Environmental Factors Influencing Tree Species Regeneration in Different Forest Stands Growing on a Limestone Hill in Phrae Province, Northern Thailand

  • Asanok, Lamthai;Marod, Dokrak
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.237-252
    • /
    • 2016
  • Improved knowledge of the environmental factors affecting the natural regeneration of tree species in limestone forest is urgently required for species conservation. We examined the environmental factors and tree species characteristics that are important for colonization in diverse forest stands growing on a limestone hill in northern Thailand. Our analysis estimated the relative influence of forest structure and environmental factors on the regeneration traits of tree species. We established sixty-four $100-m^2$ plots in four forest stands on the limestone hill. We determined the species composition of canopy trees, regenerating seedlings, and saplings in relation to the physical environment. The relationships between environmental variables and tree species abundance were assessed by canonical correspondence analysis (CCA), and we used generalized linear mixed models to examine data on seedling/sapling abundances. The CCA ordination indicated that the abundance of tree species within the mixed deciduous forest was closely related to soil depth. The abundances of tree species growing within the sink-hole and hill-slope stands were positively related to the extent of rocky outcropping; light and soil moisture positively influenced the abundance of tree species in the hill-cliff stand. Physical factors had a greater effect on tree regeneration than did factors related to forest structure. Tree species, such as Ficus macleilandii, Dracaena cochinchinensis, and Phyllanthus mirabilis within the hill-cliff or sink-hole stand, colonized well on large rocky outcroppings that were well illuminated and had soft soils. These species regenerated well under conditions prevailing on the limestone hill. The colonization of several species in other stands was negatively influenced by environmental conditions at these sites. We found that natural regeneration of tree species on the limestone hill was difficult because of the prevailing combination of physical and biological factors. The influence of these factors was species dependent, and the magnitude of effects varied across forest stands.

Biomass and Carbon Storage Pattern in Natural and Plantation Forest Ecosystem of Chhattisgarh, India

  • Jhariya, Manoj Kumar;Yadav, Dhiraj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • We studied natural and plantation forest ecosystem of Sarguja in Chhattisgarh, India in order to understand how vegetation biomass, carbon stock and its allocation patterns vary among the sites. For this, stratified random sampling was opted to measure the different layers of vegetation. Wide floral diversity was found in the natural forest site as compared to the teak stand. Overall, 17 tree species found in natural forest comprising 8 families while in the teak stand 6 species were recorded. In understory strata 23 species were recorded (18 herbs and 5 shrubs) in natural forest whereas in teak stand 20 herb species and 3 shrubs were found. Great variation was also seen in the population dynamics of the different vegetation stratum in concerned sites. The sapling, seedling and herb density was found to be highest in natural stand while tree and shrub density was more in teak stand. Results indicated that stand biomass of the natural site was $321.19t\;ha^{-1}$ while in the teak stand it was $276.61t\;ha^{-1}$. The total biomass of tree layer in plantation site was $245.22t\;ha^{-1}$ and natural forest $241.44t\;ha^{-1}$. The sapling, seedling, shrub and forest floor biomass was found highest under natural forest as compared to the teak plantation site. Carbon stock has similar trend as that of biomass accumulation in natural forest and teak stand. Higher biomass accumulation and carbon stock were recorded in the higher girth class gradation of the population structure. Proper efforts are required to manage these diverse ecosystems to obtain higher biomass and sustainable ecological services.

Population Structure, and Emergence and Growth Dynamics of Seedling, and Spatial Distribution of Dendropanax morbifera Lev.(Araliaceae) (황칠나무의 집단구조와 치수의 발생과 생육동태 및 공간분포)

  • 정재민
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.345-352
    • /
    • 1998
  • A Korean endemic and evergreen small tree ' Dendropanax morbifera $L_{EV}$.(Araliaceae)' is a component of evergreen forest and mainly idstributein sourthern region and islands in Korea. A local population of D. morbifera which is located between evergreen and deciduous forest within 50m x 50m quadrate was investigated to ascertain the change of population structure, emergence and growth dynamics of seedlings and saplings, and pattern of spatial distribution by the temproal and spatial expansion of population . The result of analysis of population structure by Importnace Value(IV), evergreen forest showed a high species diversity of evergreen tree species such as Cinnamomum japonicum, Machilus japonica, Neolitsea serica, Daphniphyllum macropodum, Ligustrum japonicum, and etc, in middle and under story than in upper story where Camelia japonica and Quercus acuta were dominant. And in conterminous deciduous fores, the major component of evergreen forest in this region, Camellia japonica, Quercus acuta, evergreen tree of Lauraceae and etc. were abundant in only under story. IV of D. morbifera differed from among three story. In comparative analysis of emergence and growth dynamics of D. morbifera seedlings and saplings between evergreen and deciduous forest, emergece and density of seedlings were significantly greater in evergreen than in deciduous forest, and growth of height and basal diameter of seedlings and saplings were slightly larger in evergreen than in deciduous forest. The spatial distribution patterns by Moristia's index mapping of indivuduals using a lattice method of XY axis within this population showed that seedlings(age up to 2 years) and saplings (age>2 years and height<1m) both evergreen and deciduous forest were more or less aggregated apart from mature trees, and thougth intermediate trees(height>1m and dbh<10cm) had a aggregated distribution pattern, mature trees(dbh>10cm were uniform. In conclusion , the expansion of D. morbfera population from evergreen to deciduous forest accompanied with a mumber of evergreen woody species, and also, emergence and recruitment, and growth of seedlings were greatly influenced moisture and canopy by around community structure.

  • PDF

Effect of Carbonized Wastewoods on Soil Improvement (목질폐잔재 탄화물의 토양개량 효과)

  • 이동욱;김병로
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In this study, it was examined the effect of carbonized wastewoods on soil improvement and effect of charcoal size on tree seedling growth Thuja accidentalis seedlings grow better in the charcoal-treated soil than in the non-treated soil. Especially Pinus koraiensis charcoal with good adsorption. brought the best growth result. The charcoal treatment also improved the height growth of transplanted Aesuculus turbinate seedling However charcoal sizes(i.e. powder and particle) did not affect the growth of the seedling. Also apple trees which had been suffering from rotten roots caused by root rot was recovered by application particle-sized charcoal.

  • PDF

The Effect of Jellyfish (Nemopilema nomurai) Fertilizer on Tree Growth in Hillside Erosion Control Works

  • Kim, Yong-Rae;Kim, Suk-Woo;Damdinsuren, Enkhjargal;Ezaki, Tsugio;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.227-231
    • /
    • 2012
  • Reforestation is one of the most important ways to reduce erosion soil. The objective of this study was to determine the effect of jellyfish soil amendment on seedling growth for reforestation. 100g jellyfish soil amendment was applied into planting hole for the purpose of improvement of the Chamaecyparis obtusa seedling growth. Results showed that during growing period, mortality were 4.4% for the fertilized group and 8.3% for control group. The seedling average height and root diameter were 95.0 cm and 1.07 cm in fertilized group and 40.6 cm and 0.74 cm in control group. The fertilized group was found to be superior (by 1 to 5%) to control group in terms of mortality rate, seedlings height, and root diameter. The positive growth of the fertilized group can be due the increase in soil moisture and the higher availability of nutrients to the plants from jellyfish fertilizer.

Root Nodule Biomass of Robinia pseudoacacia and Amorpha fruticosa Seedlings with Fertilization Treatments

  • Noh, Nam-Jin;Son, Yo-Whan;Seo, Kyung-Won;Kim, Rae-Hyun;Koo, Jin-Woo;Ban, Ji-Yeon;Kim, Jeong-Gyu
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.151-155
    • /
    • 2006
  • Root nodule biomass, and seedling biomass and growth were examined for 2-year-old Robinia pseudoacacia and Amorpha fruticosa seedlings following fertilization treatments. Organic fertilizer, solid combination fertilizer, and organic fertilizer plus solid combination fertilizer were used for the study. Root nodule biomass (g/plant) ranged from 3.00 to 7.06 for R. pseudoacacia and varied from 1.52 to 2.32 for A. fruticosa, respectively. In all treatments, root nodule biomass of R. pseudoacacia was significantly higher than those of A. fruticosa. Fertilization significantly increased root nodule biomass for only R. pseudoacacia, however, there were no significant differences in root nodule biomass among fertilization treatments. Root nodule biomass was not influenced by soil nitrogen (N) and phosphorous (P) concentrations following fertilization treatments. Seedling biomass (components and total) and growth (diameter at root collar and height) were strongly correlated with root nodule biomass for the two N fixing tree species.

In Vitro Regeneration of Pongamia pinnata Pierre

  • Sujatha, K.;Hazra, Sulekha
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2006
  • Pongamia pinnata Pierre is a tree legume, having potential in production of raw material for biodiesel. A protocol for in wk propagation of this plant was standardized using seedling explants. Growth regulators (GR) including gibberellic acid $(GA_3),\;N^6-benzylaminopurine(BA)$, thidiazuron (TDZ), and Adenine sulphate (Ads) were tested for optimum germination of seeds. Removal of seed coat prior to germination, controlled fungal growth partially but enhanced bacterial growth. Antibiotic cefotaxime was ineffective in controlling bacterial contamination. Seedling derived nodal explants and cotyledon nodes with attached cotyledons were excised and cultured for induction of shoots. Optimum sprouting and multiplication of shoot buds were obtained in MS medium supplemented with $8.88{\mu}M$ BA. These buds differentiated and rooted on medium devoid of GR. Optimum growth of Pongamia seedling was obtained in cotton plugged culture vessels. Reculturing of the cotyledon node explants produced more shoots from the same site. This process of removing shoots and reculturing of cotyledon node was followed for eight passages yielding 4 to 8 shoots in each cycle. The shoots (75%) rooted on half strength MS basal medium supplemented with 0.22% charcoal. All plants survived on transfer to soil. This is the first report on in vitro regeneration of Pongamia pinnata. This report demonstrates the possibility of coupling more than one parameter in single experiment to hasten the process of standardization. The process of cycling the nodal explant repeatedly for production of large number of shoots from single meristem may find application in genetic transformation experiments wherein meristems are used for transformation.

Quality of Single-Harvested Red Peppers (일시 수확한 고추의 품질)

  • Chung, Koo-Min;Kwon, Seung-Kyu;Hwang, Jae-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.128-131
    • /
    • 2002
  • 'Manita', a red pepper cultivar being cultivated currently and 'HL', a cultivar bred for single-harvest by National Horticultural Research Institute were grown by direct sowing and raising seedling methods, respectively, and all the fruits on the tree were harvested once. Fruits were grouped into 6 grades by color and appearance and their chemical compositions were analyzed. Generally, 'HL' showed less redness and contained less amounts of capsaicin, organic acid, Vit. C, and sugar than 'Manita'. Regardless of cultivar and cultivation method, red-old fruits, ripened and partially dried on the plant, had more red color (21-30%) and more capsaicin (40.0-78.3 mg% vs. 33.2-52.7 mg%), but less sugar (12.70-16.69% vs. 14.46-17.43%) than red-fresh fruits. No difference was found between direct sowing and raising seedling.

Effects of Nitrogen Fertilization on Growth of Populus sibirica and Ulmus pumila Seedlings and Soil Properties in a Semi-Arid Area, Mongolia (몽골 반건조지에서 질소 시비가 백양나무와 비술나무 묘목의 생장 및 토양 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kim, Seongjun;Park, Min Ji;An, Jiae;Kang, Hoduck;Yi, Myong-Jong;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • This study was conducted to investigate the effects of different levels and types of nitrogen fertilizer on seedlings and soil chemical properties in a semi-arid area, Mongolia. 2-year-old Populus sibirica and 4-year-old Ulmus pumila seedlings were planted in May 2014. Six treatments with three levels of nitrogen (low-level: urea $5g\;tree^{-1}$; medium-level: urea $15g\;tree^{-1}$, ammonium sulfate $33g\;tree^{-1}$, urea $15g\;tree^{-1}$ with potassium phosphate $10g\;tree^{-1}$; high-level: urea $30g\;tree^{-1}$) were applied and for the medium-level of nitrogen, different types of fertilizer were treated. Survival rate, root collar diameter (RCD) growth rate, leaf nitrogen concentration of seedlings, and soil chemical properties were determined in August 2014. The seedling survival rate of both species decreased as the level of nitrogen increased. This result can be explained by water stress caused by nitrogen fertilization in arid regions. The RCD growth rate of P. sibirica was significantly decreased by the treatment of high-level of nitrogen due to excessive nitrogen fertilization, and was increased by the treatment of ammonium sulfate due to sulfur which might promote nitrogen uptake. The leaf nitrogen concentration of P. sibirica did not change by the treatment of low-level of nitrogen, and was increased by the treatment of medium-level of nitrogen. There were no significant differences in the RCD growth rate and the leaf nitrogen concentration of U. pumila among the six treatments. None of soil chemical properties was affected by nitrogen fertilization. Overall, the low-level of nitrogen showed no effect on seedlings and soil chemical properties, except on survival rate of U. pumila and the high-level of nitrogen was considered excessive fertilization. Continuous monitoring of medium-level nitrogen fertilization including the ammonium sulfate, which increased early growth of seedlings, would be needed to elucidate the effect of fertilization on seedling growth and soil properties in a semi-arid region.