• Title/Summary/Keyword: SDN Routing

Search Result 38, Processing Time 0.034 seconds

Implementing Efficient Segment Routing in SDN (SDN 환경에서 효율적인 세그먼트 라우팅 구현)

  • Kim, Young-il;Kwon, aewook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.94-96
    • /
    • 2021
  • Software-Defined Networking (SDN), which has emerged to overcome the limitations of existing network architectures, makes routing management simpler and more efficient through a central controller. SR (Segment Routing) is a flexible and scalable way of doing source routing, and defines the information path of the network through a list of segments arranged in the packet header. In an SDN environment, the performance of each router is almost the same, but packets tend to be concentrated on routes that are frequently used depending on routing algorithms. Routers in that path have a relatively high frequency of failure and are more likely to become bottlenecks. In this paper, we propose a routing algorithm that allows the router, which is a resource in the network, to evenly process packets in the SDN with SR, so that the administrator can utilize the resources in the network without idle routers, and at the same time facilitate the management of the router.

  • PDF

Design and Implementation of The EIGRP based on the SDN (SDN 기반의 EIGRP 라우팅 프로토콜 설계 및 구현)

  • Choi, Youngjun;Kwon, Taewook
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.178-185
    • /
    • 2019
  • Recently, due to the rapid growth of the internet the existing network architecture is showing limitations. In order to overcome these problems SDN has been proposed as a new paradigm. EIGRP is a modern routing protocol with many advantages but little research has been done on operation in SDN. In this paper we propose a controller-centric EIGRP based on the SDN environment. To construct the SDN network, We seperate the control function and the data transfer function and the EIGRP is operated by a separated controller. Experiments have shown that the proposed scheme can actually work and be used effectively.

SDN-based wireless body area network routing algorithm for healthcare architecture

  • Cicioglu, Murtaza;Calhan, Ali
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.452-464
    • /
    • 2019
  • The use of wireless body area networks (WBANs) in healthcare applications has made it convenient to monitor both health personnel and patient status continuously in real time through wearable wireless sensor nodes. However, the heterogeneous and complex network structure of WBANs has some disadvantages in terms of control and management. The software-defined network (SDN) approach is a promising technology that defines a new design and management approach for network communications. In order to create more flexible and dynamic network structures in WBANs, this study uses the SDN approach. For this, a WBAN architecture based on the SDN approach with a new energy-aware routing algorithm for healthcare architecture is proposed. To develop a more flexible architecture, a controller that manages all HUBs is designed. The proposed architecture is modeled using the Riverbed Modeler software for performance analysis. The simulation results show that the SDN-based structure meets the service quality requirements and shows superior performance in terms of energy consumption, throughput, successful transmission rate, and delay parameters according to the traditional routing approach.

Traffic Engineering and Manageability for Multicast Traffic in Hybrid SDN

  • Ren, Cheng;Wang, Sheng;Ren, Jing;Wang, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2492-2512
    • /
    • 2018
  • Multicast communication can effectively reduce network resources consumption in contrast with unicast. With the advent of SDN, current researches on multicast traffic are mainly conducted in the SDN scenario, thus to mitigate the problems of IP multicast such as the unavoidable difficulty in traffic engineering and high security risk. However, migration to SDN cannot be achieved in one step, hybrid SDN emerges as a transitional networking form for ISP network. In hybrid SDN, for acquiring similar TE and security performance as in SDN multicast, we redirect every multicast traffic to an appropriate SDN node before reaching the destinations of the multicast group, thus to build up a core-based multicast tree substantially which is first introduced in CBT. Based on the core SDN node, it is possible to realize dynamic control over the routing paths to benefit traffic engineering (TE), while multicast traffic manageability can also be obtained, e.g., access control and middlebox-supported network services. On top of that, multiple core-based multicast trees are constructed for each multicast group by fully taking advantage of the routing flexibility of SDN nodes, in order to further enhance the TE performance. The multicast routing and splitting (MRS) algorithm is proposed whereby we jointly and efficiently determine an appropriate core SDN node for each group, as well as optimizing the traffic splitting fractions for the corresponding multiple core-based trees to minimize the maximum link utilization. We conduct simulations with different SDN deployment rate in real network topologies. The results indicate that, when 40% of the SDN switches are deployed in HSDN as well as calculating 2 trees for each group, HSDN multicast adopting MRS algorithm can obtain a comparable TE performance to SDN multicast.

The Top-K QoS-aware Paths Discovery for Source Routing in SDN

  • Chen, Xi;Wu, Junlei;Wu, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2534-2553
    • /
    • 2018
  • Source routing is the routing scheme that arranges the whole path from source to target at the origin node that may suit the requirements from the upper layer applications' perspective. The centralized control in SDN (Software-Defined Networking) networks enables the awareness of the global topology at the controller. Therefore, augmented source routing schemes can be designed to achieve various purposes. This paper proposes a source routing scheme that conducts the top-K QoS-aware paths discovery in SDN. First, the novel non-invasive QoS over LLDP scheme is designed to collect QoS information based on LLDP in a piggyback fashion. Then, variations of the KSP (K Shortest Paths) algorithm are derived to find the unconstrained/constrained top-K ranked paths with regard to individual/overall path costs, reflecting the Quality of Service. The experiment results show that the proposed scheme can efficiently collect the QoS information and find the top-K paths. Also, the performance of our scheme is applicable in QoS-sensitive application scenarios compared with previous works.

Dynamic Service Chaining Method Considering Performance of Middlebox Over SDN (소프트웨어 정의 네트워크상의 미들박스 성능을 고려한 동적 서비스 체이닝 방안)

  • Oh, Hyeongseok;Kim, Namgi;Choi, Yoon-Ho
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.47-55
    • /
    • 2015
  • The conventional dynamic routing methods in Software Defined Networks (SDN) set the optimal routing path based on the minimum link cost, and thereby transmits the incoming or outgoing flows to the terminal. However, in this case, flows can bypass the middlebox that is responsible for security service and thus, thus the network can face a threat. That is, while determining the best route for each flow, it is necessary to consider a dynamic service chaining, which routes a flow via a security middlebox. Therefore, int this paper, we propose a new dynamic routing method that considers the dynamic flow routing method combined with the security service functions over the SDN.

Energy-Aware Traffic Engineering in Hybrid SDN/IP Backbone Networks

  • Wei, Yunkai;Zhang, Xiaoning;Xie, Lei;Leng, Supeng
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.559-566
    • /
    • 2016
  • Software defined network (SDN) can effectively improve the performance of traffic engineering and will be widely used in backbone networks. Therefore, new energy-saving schemes must take SDN into consideration; this action is extremely important owing to the rapidly increasing energy consumption in telecom and Internet service provider (ISP) networks. Meanwhile, the introduction of SDN in current networks must be incremental in most cases, for technical and economic reasons. During this period, operators must manage hybrid networks in which SDN and traditional protocols coexist. In this study, we investigate the energy-efficient traffic engineering problem in hybrid SDN/Internet protocol (IP) networks. First, we formulate the mathematical optimization model considering the SDN/IP hybrid routing mode. The problem is NP-hard; therefore, we propose a fast heuristic algorithm named hybrid energy-aware traffic engineering (HEATE) as a solution. In our proposed HEATE algorithm, the IP routers perform shortest-path routing by using distributed open shortest path first (OSPF) link weight optimization. The SDNs perform multipath routing with traffic-flow splitting managed by the global SDN controller. The HEATE algorithm determines the optimal setting for the OSPF link weight and the splitting ratio of SDNs. Thus, the traffic flow is aggregated onto partial links, and the underutilized links can be turned off to save energy. Based on computer simulation results, we demonstrate that our algorithm achieves a significant improvement in energy efficiency in hybrid SDN/IP networks.

Fast Recovery Routing Algorithm for Software Defined Network based Operationally Responsive Space Satellite Networks

  • Jiang, Lei;Feng, Jing;Shen, Ye;Xiong, Xinli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2936-2951
    • /
    • 2016
  • An emerging satellite technology, Operationally Responsive Space (ORS) is expected to provide a fast and flexible solution for emergency response, such as target tracking, dense earth observation, communicate relaying and so on. To realize large distance transmission, we propose the use of available relay satellites as relay nodes. Accordingly, we apply software defined network (SDN) technology to ORS networks. We additionally propose a satellite network architecture refered to as the SDN-based ORS-Satellite (Sat) networking scheme (SDOS). To overcome the issures of node failures and dynamic topology changes of satellite networks, we combine centralized and distributed routing mechanisms and propose a fast recovery routing algorithm (FRA) for SDOS. In this routing method, we use centralized routing as the base mode.The distributed opportunistic routing starts when node failures or congestion occur. The performance of the proposed routing method was validated through extensive computer simulations.The results demonstrate that the method is effective in terms of resoving low end-to-end delay, jitter and packet drops.

A Routing Algorithm based on Deep Reinforcement Learning in SDN (SDN에서 심층강화학습 기반 라우팅 알고리즘)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1153-1160
    • /
    • 2021
  • This paper proposes a routing algorithm that determines the optimal path using deep reinforcement learning in software-defined networks. The deep reinforcement learning model for learning is based on DQN, the inputs are the current network state, source, and destination nodes, and the output returns a list of routes from source to destination. The routing task is defined as a discrete control problem, and the quality of service parameters for routing consider delay, bandwidth, and loss rate. The routing agent classifies the appropriate service class according to the user's quality of service profile, and converts the service class that can be provided for each link from the current network state collected from the SDN. Based on this converted information, it learns to select a route that satisfies the required service level from the source to the destination. The simulation results indicated that if the proposed algorithm proceeds with a certain episode, the correct path is selected and the learning is successfully performed.

AP-SDN: Action Program enabled Software-Defined Networking Architecture

  • Zheng Zhao;Xiaoya Fan;Xin Xie;Qian Mao;Qi Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1894-1915
    • /
    • 2023
  • Software-Defined Networking (SDN) offers several advantages in dynamic routing, flexible programmable control and custom application-driven network management. However, the programmability of the data plane in traditional SDN is limited. A network operator cannot change the ability of the data plane and perform complex packet processing on the data plane, which limits the flexibility and extendibility of SDN. In the paper, AP-SDN (Action Program enabled Software-Defined Networking) architecture is proposed, which extends the action set of SDN data plane. In the proposed architecture, a modified Open vSwitch is utilized in the data plane allowing the execution of action programs at runtime, thus enabling complex packet processing. An example action program is also implemented which transparently encrypts traffic for terminals. At last, a prototype system of AP-SDN is developed and experiments show its effectiveness and performance.