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Abstract 
 

Source routing is the routing scheme that arranges the whole path from source to target at the 
origin node that may suit the requirements from the upper layer applications’ perspective. The 
centralized control in SDN (Software-Defined Networking) networks enables the awareness 
of the global topology at the controller. Therefore, augmented source routing schemes can be 
designed to achieve various purposes. This paper proposes a source routing scheme that 
conducts the top-K QoS-aware paths discovery in SDN. First, the novel non-invasive QoS 
over LLDP scheme is designed to collect QoS information based on LLDP in a piggyback 
fashion. Then, variations of the KSP (K Shortest Paths) algorithm are derived to find the 
unconstrained/constrained top-K ranked paths with regard to individual/overall path costs, 
reflecting the Quality of Service. The experiment results show that the proposed scheme can 
efficiently collect the QoS information and find the top-K paths. Also, the performance of our 
scheme is applicable in QoS-sensitive application scenarios compared with previous works. 
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1. Introduction 

Source routing is the routing scheme that arranges the whole path from source to target at the 
origin node. In traditional IP networks, routes are determined by the intermediate routers in a 
hop-by-hop fashion. Source routing differs from traditional routing in that paths are designated 
by the origin node. The origin node specifies the whole path in the Source Routing and Record 
Route option of the IPv4 header. Source routing works in two flavors, namely Strict Source 
and Record Route (SSRR) and Loose Source and Record Route (LSRR). SSRR requires paths 
to be exactly concatenated by routers specified in the IP header options, no more or no less. On 
the other hand, LSRR loosely requires the routers that must be traversed, but more routers are 
allowed to appear between any two consecutive routers specified in the IP header options. 

One of the well-known usages of source routing is its application in the traceroute utility to 
detect the round-trip path between source and target. Source routing also has its application in 
wireless networks. In the MANET and Ad Hoc Network arena, Dynamic Source Routing 
(DSR) [1], an on-demand routing protocol, is a typical source routing scheme. DSR discovers 
the whole path from source to target in a peer-to-peer fashion. DSR allows the origin node to 
carry path information in the packet header so that intermediate nodes do not have to maintain 
the routing table. Instead, paths are merely cached to keep minimum space usage.  

Despite the above applications, the utilization of source routing is limited in real-world 
networks due to that the path specified by the origin node might not be consistent with the 
current topology. The essential reason for this deficiency is the lack of the global topology 
view for the origin node to determine a consistent path. Recent years have witnessed the rise of 
SDN (Software-Defined Networking) [2]. SDN is an emerging network paradigm which splits 
the forwarding plane (e.g., switches) and the control plane (i.e., controllers). Usually, the 
LLDP (Link Layer Discovery Protocol) works in the southbound of SDN. It discovers and 
aggregates topology of the underlying network so that the controller is aware of the global 
topology. With the global topology view at hand, it is possible for the SDN controller to 
achieve globally optimized resource composition and utilization, including optimized 
end-to-end paths. Therefore, it is quite likely to find the consistent path for source routing in 
the context of SDN. Usages of source routing in SDN are seen in various aspects, for example, 
in data center networks [3]–[5], WAN [6], [7], traffic steering/middlebox chaining [8]–[10], 
fault tolerance/recovery [3], [11]–[13], SFC (Service Function Chaining) [4], [14]–[17], etc. 

Source routing can be divided into two stages: path discovery and path deployment (i.e., 
applying the found path for data forwarding). This paper focuses on the path discovery in the 
SDN environment. The authors have identified several issues in this topic in the current 
literature.  
• Alternative paths discovery is seldom studied in the current literature. Although reference 

[3] finds alternative paths, the solution is far from optimized. Besides, QoS is not 
considered as a path discovery criterion, thus, it is not suitable in QoS-critical 
applications.  

• Intermediate nodes constraint is seldom considered. In applications such as middlebox 
chaining [8]–[10], paths are required to traverse various intermediate nodes to, for 
example, deliver specific functions (firewall, deep packet inspection, etc.) or load 
balancing.  
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This paper proposes the top-K QoS-aware paths discovery in SDN environment. It finds 
the top-K paths using the K Shortest Paths (KSP) algorithm and its variations. The 
contributions of the work are twofold.  
• A non-invasive QoS information collecting scheme. This scheme uses LLDP as the “ferry” 

to load QoS information collected from underlying switches in a piggyback fashion so 
that no fundamental modification of the current OpenFlow-based southbound interface 
needs to be made.  

• QoS-aware multi-path discovery. The QoS information collected can be utilized to 
support QoS-aware path discovery. This work conducts a multi-path discovery so that 
top-K paths are returned for backup or load balancing purposes while satisfying the 
intermediate nodes constraints.  

This paper is organized as follows. Section 2 summarizes previous works. Section 3 
discusses the non-invasive and piggyback style QoS information collecting scheme based on 
LLDP. Section 4 derives the variations of KSP algorithms to find constrained/unconstrained 
top-K paths based on individual/overall path costs. Experiments based on simulation are 
conducted on Section 5. And finally, this paper is concluded in Section 6.  

2. Related Works 
In this section, we summarize related works in SDN source routing. Compared with traditional 
source routing path discovery such as DSR which discovers paths in a distributed fashion, 
SDN-based source routing path discovery works in a centralized fashion. Distributed path 
discovery involves traffic overhead (the on-demand RREQ and RREP, or the table-driven 
routes updates) to deliver topology information or path information. SDN-based source 
routing, on the contrary, maintains the current topology and paths in the controller thus at large 
reducing traffic overhead for routing.  

Source routing is actively used in SDN researches. Abujoda et al proposed the SDN-based 
source routing for scalable service chaining in datacenters [4]. The work puts the path 
information in the packet header. Intermediate switch ports are encoded as plain numbers to 
reduce the need for extra bytes for path information so that minimum modification of packets 
can be made. However, it focuses on path deployment and does not specify how paths are 
discovered in the SDN-based datacenters. Besides, it lacks the QoS support.  

Ref [7] focuses on controller scalability and performance issues in SDNs, and discusses a 
new routing scheme that leverages a variation of source routing for use in OpenFlow-based 
networks. The research aims to reduce the state needed to be distributed to the network devices 
by the controller(s) in SDNs, and in turn improve the scale, convergence time, fault tolerance 
and cost of such network architectures. This work derives the number-encoded source routing 
path expression. The path expression is pushed from the controller only to the ingress node, 
which at large reduces the forwarding states that must be propagated to data plane switches.  

StEERING [8] tries to arrange a path traversing specific middleboxes by extending the 
OpenFlow and NOX controller. The key of the extension is the split of a monolithic flow table 
into several micro tables to constrain the “rule explosion”. StEERING solves the path planning 
problem using Graph Theory. The main deficiency of StEERING is the lack of QoS support. It 
conducts the path discovery mainly based on middleboxes functions.  

Reference [5] proposes a flow table update method based load balancing to avoid the 
controller from getting over-loaded with regard to interaction traffic between the control plane 
and data plane. The load balancing measurement differs from traditional load balancing in that 
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it considers both the loads in the control plane and data plane. By comparing the load of the 
control plane and data plane in each domain, flow table entry is dynamically installed based on 
a combination of source routing and direct installation. The controller’s load could be reduced 
and the load balance of the control plane and data plane could be dynamically adjusted. The 
controller computes the appropriate path which is then sent to the ingress node. The ingress 
node takes it as the source routing information and passes it to the successive nodes. Nodes 
along the path install path information as flow entries. The flow table entries for the first H 
hops on the path are pushed using a modified source routing method whereas the remains hops 
install flow entries directly instructed by the controller.  

SlickFlow [3] focuses on the source routing based fault recovery. The fault recovery 
application on the controller pushes the path information as special headers on the ingress 
switches. The path consists of several segments where the next hop and the alternative path 
from that hop are contained in each segment. Upon network failure at a certain node, 
alternative path is adopted proactively by the current node to reduce controller intervention. 
The source routing in SlickFlow is SSRR. The path discovery is an “all routes” based solution 
which is not optimized in large-scale networks.  

Our work, as we will discuss in later sections, differs from these works in that: (1) QoS 
information is considered as a path discovery criterion to support QoS provisioning; (2) 
multiple paths can be found; (3) node constraints are also considered to find restricted paths.  

3. QoS Information Collecting and Evaluation 

3.1. QoS over LLDP Scheme 
In standard SDN networks, controllers are aware of switches directly connected to them 
through bidirectional Hello messages in the standard OpenFlow protocol. However, the 
underlying link states between switches (i.e., how switches are mutually connected) are not 
visible to controllers in the first place. Therefore, in the initial stage of an SDN network, 
controllers do not have the topological knowledge of the whole SDN network. In order to 
perform centralized control over an SDN network, controllers must carry out topology 
discovery. Controllers usually use LLDP to fulfill such a task. LLDP is an IEEE proposed 
protocol widely used in network arena for topology discovery. 

The controller instructs a switch to multicast the LLDP packet to all of its ports through a 
PacketOut (instructive packets from controllers to switches). In this PacketOut, topological 
information of the switch such as chassis information, port information, etc., is all contained. 
All other switches connected to this sender switch receive the LLDP packet, and then match 
this packet against the flow table entries of their own, only to find no matches for LLDP 
packets. Thus, switches will send a PacketIn (packets from switches to controllers) containing 
this LLDP to the controller asking how to process this packet. Since the PacketIn contains 
topology information about both the sender switch and the receiver switch, the controller can 
now assert that there exists a link between the two switches based on the received PacketIn. By 
means of this iterative PacketIn/Out interaction, topology of the whole SDN network can be 
discovered by the central controller. This centralized topology discovery in SDN is quite 
different from how LLDP works in traditional networks where topology discovery is done by 
individual switches independently, although LLDP is used in both cases. 

Standard LLDP packets usually contain basic information such as the MAC address, 
chassis information, port information, etc. We can see from the above topology discovery 
phase, no QoS information is contained in LLDP packets. Should QoS information be 
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incorporated, the QoS-aware topology discovery can be done to enable further QoS-aware 
decisions and policies, thus QoS provisioning becomes possible. 

LLDP is a TLV (Type/Length/Value, i.e., key-value pair with length information) based 
protocol where TLVs are used for property description. We can include QoS information as 
custom TLVs in LLDP packets. In this way, LLDP can be seen as the “ferry” containing QoS 
information (i.e., QoS over LLDP) and other useful properties as its payload. We define QoS 
TLV as follows in Fig. 1. 

 

 
Fig. 1. QoS over LLDP packet format 

 
In the TLV Type field, it must be designated as 127 to indicate this is a custom TLV. The 

Length field specifies the variable-length value contained in the TLV. The Organization Code 
field indicates the designer of this customized TLV. We use the Organization Code as 
0xabcdef for the time being. The Subtype field specifies the detailed type of the contained 
value. Value String field (i.e., the QoS field in Fig. 1) gives the real value. We contain various 
QoS properties in the Value String. In order for the receiver to conveniently parse the different 
QoS properties, we use the predefined property order and length. We can see from Fig. 1 
several properties are included in fixed length in our current settings, namely delay, bandwidth, 
packet loss and jitter, 8 bytes for each property. Therefore, a QoS over LLDP packet is 38 
bytes longer than a pure LLDP packet in length. Note that more properties such as availability 
can be included in the future work. Upon receiving the QoS over LLDP packet, the switch fills 
QoS properties in corresponding TLV fields. We have implemented this mechanism in OVS 
(Open vSwitch) [18]. Section 5.1 will demonstrate the QoS collecting capabilities and 
performance of QoS over LLDP.  

3.2. QoS Property Conversion Algorithm 
After QoS over LLDP collects QoS information at the southbound interface, QoS information 
is preprocessed to enable the QoS-aware finding of the top-K paths (see for detail in Section 4). 
Commonly seen QoS properties are used for path evaluation. The top-K paths discovery 
algorithms used in this paper are the top-K paths variations of the Dijkstra [19] algorithm, i.e., 
the K Shortest Paths (KSP) [20]. Dijkstra uses cost to evaluate a path, therefore, QoS 
properties must be transformed as additive and negative (i.e., bigger values means worse) 
properties so that cost for each intermediate node and the whole path can be calculated. Paths 
are thus ranked by costs which in turn reflect the QoS. In this subsection, we introduce the 
transformation algorithms that convert various QoS properties to costs.  

3.2.1. Calculating Individual Path Costs 
Table 1 exhibits how commonly seen QoS properties can be converted as additive and 
negative properties to calculate costs (the 3rd column). 𝑣𝑖,𝑗  is the actual QoS property value of 
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the intermediate node 𝑛𝑖 where 𝑗 indicates the 𝑗-th QoS property, i.e., 𝑗 ∈ {𝑑𝑙, 𝑏𝑤,𝑝𝑙,𝑎𝑣, 𝑗𝑡}, 
namely, delay, bandwidth, packet loss, availability and jitter. Notice that more QoS properties 
can be used in real applications. For delay and jitter which are natively additive and negative, 
their corresponding costs are themselves. Bandwidth is neither a positive nor an additive 
property along the path. Thus, we follow the OSPF metric calculation convention: the 
outgoing interface bandwidth of every node is used to divide a benchmark bandwidth. In 
traditional settings, the benchmark is 100,000,000 bps. We can also set the benchmark to be 
the bandwidth of the ingress node. For availability, it can be converted as negative by getting 
its reciprocal; it then can be converted as additive from multiplicative by applying logarithm. 
Similar method can be used for packet loss.  

In addition, Table 1 also gives how path properties can be calculated using intermediate 
node properties (the 2nd column).  

Although different algorithms apply for different node properties when they are aggregated 
to calculate corresponding path properties, they share the same path property cost algorithm 
(the 4th column) once they are converted as additive and negative. The costs, 𝑐𝑝𝑎𝑡ℎ,𝑗 , in the 4th 
column are referred to as individual path costs since they correspond to a given individual 
property 𝑗, 𝑗 ∈ {𝑑𝑙, 𝑏𝑤, 𝑝𝑙,𝑎𝑣, 𝑗𝑡}, of the path.  

 
Table 1. QoS Property Transformation 

Node Property Path Property Node Property Cost Individual Path Cost 

delay 
(negative) 
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𝑛
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jitter 
(negative) 
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Fig. 2 shows an example of a simple topology where 2 paths exist between source node n1 

and target node n6, namely p1 (dashed lines) and p2 (solid lines). The upper half of Table 2 
exhibits the actual values of QoS properties of various nodes (lines from 𝑣1,𝑗 to 𝑣6,𝑗) and the 
lower half shows the corresponding costs (lines from 𝑐1,𝑗  to 𝑐6,𝑗) calculated using algorithms 
introduced in Table 1. Lines in the middle (lines 𝑝1𝑗  and 𝑝2𝑗) show the aggregated path 
properties and the lines at the bottom show the individual path costs (lines 𝑐𝑝1,𝑗  and 𝑐𝑝2,𝑗). We 
can see from these lines that lower individual path costs always correspond to better paths in 
terms of various individual QoS properties.  
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Fig. 2. Multi-Path Example 

 
Table 2. QoS Property Example 

 
DL (ms) BW (Mbps) PL AV JT (ms) 

𝑣1,𝑗 1.000 4.000 0.100 0.900 0.010 
𝑣2,𝑗 2.000 2.000 0.050 0.990 0.010 
𝑣3,𝑗 2.000 1.000 0.200 0.980 0.010 
𝑣4,𝑗 3.000 6.000 0.030 0.750 0.030 
𝑣5,𝑗 3.000 5.000 0.030 0.800 0.100 
𝑣6,𝑗 1.000 2.000 0.100 1.000 0.010 
𝑝1𝑗  6.000 1.000 0.384 0.873 0.040 
𝑝2𝑗  8.000 2.000 0.238 0.540 0.150 
𝑐1,𝑗 1.000 1.000 0.046 0.046 0.010 
𝑐2,𝑗 2.000 2.000 0.022 0.004 0.010 
𝑐3,𝑗 2.000 4.000 0.097 0.009 0.010 
𝑐4,𝑗 3.000 0.667 0.013 0.125 0.030 
𝑐5,𝑗 3.000 0.800 0.013 0.097 0.100 
𝑐6,𝑗 1.000 2.000 0.046 0.000 0.010 
𝒄𝒑𝟏,𝒋 6.000 9.000 0.211 0.059 0.040 
𝒄𝒑𝟐,𝒋 8.000 4.467 0.118 0.268 0.150 

3.2.2. Calculating Overall Path Costs 
Paths can be selected based on individual path costs, along with the traffic types (e.g., the 
transport layer port number, the ToS field in the IP header, etc.). For example, for time-critical 
traffic or applications, p1 is preferable since it has lower delay cost while for 
bandwidth-consuming traffic such as video streaming, p2 is preferred since it has lower 
bandwidth cost. In some other cases, paths are selected based on their overall quality for 
generic traffic (e.g., best effort), therefore, various path property costs need to be aggregated 
for the overall path cost. To calculate the overall path cost, 2 steps must be conducted.  
• Normalization of node property costs: Normalization eliminates effects of the scale and 

the unit of different node property costs so that costs are treated in a unified manner for 
later aggregation. By substituting actual values 𝑣𝑖,𝑗  in the 3rd column of Table 1 with 
normalized values 𝑛𝑣𝑖,𝑗, normalization can be achieved. 𝑛𝑣𝑖,𝑗  can be calculated using the 
following equations, equation (1) for positive properties and (2) for negative, respectively.  
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𝑣𝑗
𝑚𝑎𝑥−𝑣𝑗
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1, 𝑣𝑗𝑚𝑎𝑥 = 𝑣𝑗𝑚𝑖𝑛
� (2) 

• Weighted summation of the path property costs: The above step gets normalized property 
costs for a given path. The weighted summation of these costs is applied to calculate the 
overall cost of a path.  

 �
𝑐𝑝𝑎𝑡ℎ = ∑𝑤𝑗 × 𝑐𝑝𝑎𝑡ℎ,𝑗

∑𝑤𝑗 = 1 , 𝑗 ∈ {𝑑𝑙, 𝑏𝑤,𝑝𝑙,𝑎𝑣, 𝑗𝑡},𝑤𝑗 ≥ 0� (3) 

Note again that, 𝑐𝑝𝑎𝑡ℎ,𝑗  is the criterion to evaluate a path based on the given property 𝑗 
while 𝑐𝑝𝑎𝑡ℎ is used to evaluate a path based on the overall status. Both costs can be used to 
rank paths during path discovery.  

4. KSP-based Paths Discovery 
In the previous section, we can see that paths can be evaluated and ranked by path costs (either 
by individual path costs or by overall path costs); But simply iterating and ranking every path 
in a large topology can be time-consuming. Cost-based evaluation can be done using 
Dijkstra-like algorithms. We solve the QoS-aware source routing paths discovery and ranking 
using the KSP algorithm [20] and its variations. KSP finds up to K highly ranked paths. We 
develop two KSP-based solutions, namely: 
• The unconstrained source routing paths discovery: In this solution, the paths discovery 

request does not constrain what nodes to be traversed. The top-K unconstrained paths 
from source to target are found purely based on path costs (by individual path costs 
𝑐𝑝𝑎𝑡ℎ,𝑗  or overall path costs 𝑐𝑝𝑎𝑡ℎ).  

• The node-constrained source routing paths discovery: In the solution, the paths discovery 
request specifies nodes that must be traversed along the path. The top-K node-constrained 
paths found must traverse all the specified nodes and are ranked based on path costs 
(𝑐𝑝𝑎𝑡ℎ,𝑗  or 𝑐𝑝𝑎𝑡ℎ). 

4.1. The Unconstrained Source Routing Paths Discovery 

4.1.1. The Model 
We model the SDN data plane as a graph where nodes represent switches and edges represent 
links. (𝑁,𝐴)  represents the directed graph where the finite set 𝑁 = {𝑣1,𝑣2, … , 𝑣𝑛}  is the 
vertices set and the finite set 𝐴 = {𝑎1,𝑎2, … ,𝑎𝑚} ⊆ 𝑁 ×𝑁 is the directed edges (arcs) set. An 
arc is an ordered pair 𝑎𝑘 = �𝑣𝑖, 𝑣𝑗�, 𝑖 ≠ 𝑗 associated with a positive real number which is the 
cost of this arc, denoted as 𝑐𝑖,𝑗 . 𝑐𝑖,𝑗 can be assigned using a given node property cost in the 3rd 
column of Table 1 or the normalized weighted sum of these costs, in our case. A path is 
denoted as 𝑝 = 〈𝑣𝑠 = 𝑣1′ , 𝑣2′ , … , 𝑣𝑙′ = 𝑣𝑡〉  where 𝑣𝑠  and 𝑣𝑡  represent the source node and 
destination node of the path. 𝑐𝑜𝑠𝑡(𝑝) represents the cost of path p, either using individual path 
cost 𝑐𝑝𝑎𝑡ℎ,𝑗  or the overall path cost 𝑐𝑝𝑎𝑡ℎ which is easily calculated by the algorithm specified 
in the 4th column of Table 1. Expression 𝑠𝑢𝑏𝑝(𝑥,𝑦) = 〈𝑣𝑥′ ,𝑣𝑥+1′ , … , 𝑣𝑦−1′ , 𝑣𝑦′ 〉 , 𝑥,𝑦 ∈
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{1,2, … , 𝑙} represents a sub-path of path 𝑝 from node 𝑣𝑥′  to 𝑣𝑦′ . The unconstrained source 
routing paths discovery can be modelled as follows. Note that in the further description, we 
have the following notations: K (in uppercase) is the number of shortest paths to be found; k 
(in lowercase) represents the k-th shortest path. 

Definition 1 The Unconstrained Source Routing Paths Discovery: The source node 𝑣𝑠 and 
destination node 𝑣𝑡 are determined by the user. Given a positive integer K, the unconstrained 
source routing paths discovery finds set 𝑃𝐾 = {𝑝1,𝑝2, … ,𝑝𝐾} ⊆ 𝑃𝑠𝑡  where 𝑃𝑠𝑡  is the set 
containing all the paths from 𝑣𝑠 to 𝑣𝑡 such that:  
• ∀𝑘 ∈ {1,2, … ,𝐾}, 𝑝𝑘 is loopless; 
• ∀𝑖, 𝑗 ∈ {1,2, … ,𝐾}, 𝑝𝑖 ≠ 𝑝𝑗, i.e., no duplicated path; 
• ∀𝑘 ∈ {1,2, … ,𝐾 − 1}, 𝑐𝑜𝑠𝑡�𝑝𝑘� ≤ 𝑐𝑜𝑠𝑡�𝑝𝑘+1�, i.e.,  𝑝𝑘  is found before 𝑝𝑘+1  (shorter 

paths are found first).  
• ∀𝑝 ∈ 𝑃𝑠𝑡 − 𝑃𝐾,  𝑐𝑜𝑠𝑡(𝑝𝐾) ≤ 𝑐𝑜𝑠𝑡(𝑝), i.e., top-K least-costly paths are to be found.  

4.1.2. The Algorithm 
The unconstrained source routing paths discovery can be solved using KSP. KSP tries to 
establish a tree with the K shortest paths. Suppose that K shortest paths have been found. All 
these paths can be represented as a tree with the source node 𝑣𝑠 as the root and the destination 
node 𝑣𝑡 being duplicated K times as leaves. And all the branches from source to destination 
constitute the top-K shortest paths. Apparently, if we have already established the K shortest 
path tree, then the K+1 shortest path consists of two parts: 
• A sub-path from the source node 𝑣𝑠 to an intermediate node 𝑣𝑖 (𝑣𝑠 and 𝑣𝑖 can be the same 

node), i.e., the root. According to Dijkstra algorithm, a sub-path of the shortest path is 
also the shortest one from 𝑣𝑠 to 𝑣𝑖;  

• The shortest path from the intermediate node 𝑣𝑖 to the destination node 𝑣t, i.e., the spur. 
This shortest path is constrained in that none of the edges of the K shortest path tree is 
used to produce it, to prevent duplicated paths or looped paths. 

The intermediate node 𝑣𝑖 is referred to as the “deviation node” for the K+1 shortest path 
[15]. The basic thoughts of the algorithm are as follows. First, we calculate the shortest path 
from the source node 𝑣𝑠 to the destination node 𝑣𝑡. Then every node along this path is treated 
as the deviation node to execute a heuristic exploit. During the exploit, the candidates for the 
second shortest path can be found to be placed in a set. The shortest path in this set is the 
second shortest path. The next step is that every node along the second shortest path is treated 
as the deviation node to find the third shortest path, as do in the search for the second shortest 
path. Then the algorithm iterates till the first K shortest paths are found. Details of the KSP 
algorithm are given below.  

Algorithm 1 and 2 shows in detail the KSP algorithm, where dsp(𝑣𝑠, 𝑣𝑡) calculates the 
shortest path from the source node 𝑣𝑠 to the destination node 𝑣𝑡 using Dijkstra algorithm. The 
routine nextPath(𝑣𝑠, 𝑣𝑡) finds the next shortest path between 𝑣𝑠 and 𝑣𝑡 using deviation method 
(see details in Algorithm 2). nextPath(𝑣𝑠, 𝑣𝑡) is the core of the algorithm, and is used to derive 
variations of the basic KSP in later sections. restoreGraph() is used to set the graph back to its 
initial linkage states after temporary deletion of arcs. 𝑃𝐾 is the ordered set that stores the K 
shortest paths. 𝑃𝐶 is the set that stores the shortest paths candidates. In real implementation, a 
priority queue (e.g., a heap) can be used for 𝑃𝐶 to guarantee that every time a path is fetched 
from this set it is the shortest one, to improve efficiency. Detailed explanations are shown in 
the comments in Algorithm 1 and 2. 
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Algorithm 1. KSP(𝑣𝑠, 𝑣𝑡, K) 
Input: 𝑣𝑠: the source node 
  𝑣𝑡: the destination node 
  𝐾: the number of shortest paths 
Output:  𝑃𝐾: the K shortest paths set 
 
1: 𝑃𝐾 = ∅;      //𝑃𝐾: shortest paths set. 
2: 𝑃𝐶 = ∅;      //𝑃𝐶: shortest path candidates set 
3: 𝑝1 = dsp(𝑣𝑠 , 𝑣𝑡);     //find the shortest path using Dijkstra algorithm  
4:  if 𝑝1 == 𝑁𝑈𝐿𝐿 then 
5:  return 𝑃𝐾;     //no connectivity from source to target 
6: end if 
7: 𝑃𝐾 = 𝑃𝐾⋃{𝑝1}; 
8:  while ||𝑃𝐾|| < 𝐾 do 
9:   curSPath = nextPath(𝑣𝑠 , 𝑣𝑡);  //see Algorithm 2 to find next shortest 

10:  if curSPath==NULL then 
11:    break;     //no more shortest path, break 
12:   end if 
13: end while 
14: return 𝑃𝐾; 
 

Algorithm 2. nextPath(𝑣𝑠, 𝑣𝑡) 
Input: 𝑣𝑠: the source node 
  𝑣𝑡: the target node  
Output:  curSPath: the current shortest path 
 
1: prevSPath = max(𝑃𝐾);    //shortest path found in the last iteration  
2: for 𝑖 = 1; 𝑖 ≤ 𝑝𝑟𝑒𝑣𝑆𝑃𝑎𝑡ℎ. 𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 + + do 
3:  root = 𝑠𝑢𝑏𝑝𝑟𝑒𝑣𝑆𝑃𝑎𝑡ℎ(1, 𝑖);  //get root for every node 
4:  for each path from 𝑃𝐾 do 
5:   𝑟𝑜𝑜𝑡𝑝𝑎𝑡ℎ = 𝑠𝑢𝑏𝑝𝑎𝑡ℎ(1, 𝑖);  
6:   if 𝑟𝑜𝑜𝑡 = 𝑟𝑜𝑜𝑡𝑝𝑎𝑡ℎ then 
7:    𝑐𝑖,𝑖+1 = ∞;   //determine the furthest node as deviation  
8:   end if 
9:   spur = dsp(𝑣𝑖, 𝑣𝑡);   //get spur from deviation node  
10:   restoreGraph();   //restore the linkage for deviation nodes  
11:   if spur=NULL then 
12:    return NULL;   //no more valid spur, return NULL  
13:   end if 
14:   if 𝑟𝑜𝑜𝑡 ∩ 𝑠𝑝𝑢𝑟 = ∅ then 
15:     cPath = root+spur;  //construct a loopless candidate  
16    𝑃𝐶 = 𝑃𝐶⋃ {cPath};  
17   end if 
18  end for 
19: end for 
20: curSPath=min(𝑃𝐶);     // shortest from 𝑃𝐶 is the current shortest 
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21: if 𝑐𝑢𝑟𝑆𝑃𝑎𝑡ℎ! = 𝑁𝑈𝐿𝐿 then 
22:  𝑃𝐶 = 𝑃𝐶 − {curSPath}  
23:  𝑃𝐾 = 𝑃𝐾⋃ {curSPath};  
24: end if 
25: return curSPath; 
 

4.1.3. Proof and Analysis 
In this section, we analyze the complexity of the algorithm.  

Theorem 1: The complexity of Algorithm 1 is: 𝑂(𝐾𝑛(𝑚 + 𝑛𝑙𝑜𝑔𝑛)). 𝑛 is the number of 
nodes, 𝑚 is the number of the links in the directed graph and 𝐾 is the number of paths to be 
found. 

Proof: The complexity of the heap-optimized Dijkstra algorithm is 𝑂(𝑚 + 𝑛𝑙𝑜𝑔𝑛). Since 
in KSP, all the nodes in path 𝑝𝑘 must be traversed as deviation nodes to execute heuristic 
exploits for 𝑝𝑘+1, the complexity is  𝑂(𝑙𝑘(𝑚 + 𝑛𝑙𝑜𝑔𝑛)), where 𝑙𝑘 is the length of path 𝑝𝑘, 
thus in the worst case, the complexity is 𝑂(𝑛(𝑚 + 𝑛𝑙𝑜𝑔𝑛)) , i.e., the complexity of 
nextPath(𝑣𝑠,𝑣𝑡) routine. Since K paths are to be found, the overall complexity of KSP is 
𝑂(𝐾𝑛(𝑚 + 𝑛𝑙𝑜𝑔𝑛)) theoretically. End of proof. 

4.2. The Node-Constrained Paths Discovery 
In SDN environment, paths are sometimes constrained by nodes that must be traversed. For 
example, in network congestion situation, the source routing might designate a different path 
to traverse other less-busy nodes to avoid congestion, given that the QoS information can be 
collected in the way we introduced in Section 2. It is also possible that source routing 
designates another path to traverse other nodes to achieve load balancing. We call these 
aforementioned nodes the “via nodes” in general. However, basic KSP cannot find top-K 
paths with via nodes. Instead, KSP only finds unconstrained paths from source to target 
ordered by path costs. Therefore, the basic KSP must be extended to support paths discovery 
where via nodes are required.  

4.2.1. The Model 
Definition 2 The Node-constrained Source Routing Paths Discovery: The source node 𝑣𝑠, 
destination node 𝑣𝑡 and intermediate nodes 𝑣𝑖𝑎𝐿𝑖𝑠𝑡 = 〈𝑣1′ ,𝑣2′ , … , 𝑣𝑉′ 〉 are determined by the 
user. Given a positive integer K, the node-constrained source routing paths discovery finds set 
𝑃𝐾 = {𝑝1,𝑝2, … ,𝑝𝐾} ⊆ 𝑃𝑠𝑡, where 𝑃𝑠𝑡 is the set containing all the paths from 𝑣𝑠 to 𝑣𝑡, such 
that: 
• 𝑠𝑒𝑔𝑖 = 〈𝑣𝑖′,𝑢1𝑖 ,𝑢2𝑖 , … ,𝑢𝑈𝑖 , 𝑣𝑖+1′ 〉, 𝑖 ∈ {1,2, … ,𝑉 − 1}, 𝑈 ∈ {0,1, … ,𝑛}, i.e., there exists at 

least one segment between 2 consecutive via nodes. Note that segment can be the length 
of 0, i.e., 𝑈 = 0, indicating that via nodes can be directly connected.  

• 𝑝𝑘 = 〈𝑣𝑠 , 𝑠𝑒𝑔1, 𝑠𝑒𝑔2 , … , 𝑠𝑒𝑔𝑉−1, 𝑣𝑡〉, ∀𝑘 ∈ {1,2, … ,𝐾}, i.e., a path must traverse all the 
via nodes.  

• ∀𝑘 ∈ {1,2, … ,𝐾}, 𝑝𝑘 is loopless; 
• ∀𝑖, 𝑗 ∈ {1,2, … ,𝐾}, 𝑝𝑖 ≠ 𝑝𝑗, i.e., no duplicated path; 
• ∀𝑘 ∈ {1,2, … ,𝐾 − 1}, 𝑐𝑜𝑠𝑡�𝑝𝑘� ≤ 𝑐𝑜𝑠𝑡�𝑝𝑘+1�, i.e.,  𝑝𝑘  is found before 𝑝𝑘+1  (shorter 

paths are found first).  
• ∀𝑝 ∈ 𝑃𝑠𝑡 − 𝑃𝐾,  𝑐𝑜𝑠𝑡(𝑝𝐾) ≤ 𝑐𝑜𝑠𝑡(𝑝), i.e., top-K least-costly paths are to be found.  
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4.2.2. The Algorithm 
The reason for the lack of node-constraints of KSP is that it conducts the deviation method 
purely based on nodes. Thus, we propose vKSP (via nodes supported KSP) algorithm which 
conducts deviation based on “segments” (i.e., sub-paths between consecutive via nodes) to 
guarantee via nodes to be traversed orderly. 

The vKSP algorithm is shown in Algorithm 3. This algorithm takes as the input the nodes 
that must be traversed as viaList. For easier processing, source 𝑣𝑠  and target 𝑣𝑡  are 
concatenated at the head and tail of viaList to form a chain. To get the shortest path that 
traverses all the via nodes in this chain, the algorithm gets the shortest path for every i-th and 
(i+1)-th nodes pair along the chain. These are the shortest segments that constitute the shortest 
path and are put into the set , 𝑃𝑖𝐾 i.e., the shortest segments from 𝑣𝑖 to 𝑣𝑡+1 in the chain. Also, 
the second shortest segments from 𝑣𝑖 to 𝑣𝑡+1 are calculated for later iterations. The above is 
the initialization of the algorithm, shown in lines 3–8. 

Concatenating all the new segments in 𝑃𝑖𝐾, 𝑃𝑖+1𝐾 , · · ·, generates a new batch of feasible 
paths from 𝑣𝑠 to 𝑣𝑡 which are put into 𝑃𝐶. The shortest one from 𝑃𝐶 is the next shortest path 
(shown in lines 15 and 18). The next problem is to determine from which node to generate the 
next segment so that the next batch paths can be found. Since the algorithm invokes nextPath() 
routine, it is guaranteed the last one in 𝑃𝑖𝐾 is the longest of currently found shortest segments 
from 𝑣𝑖 to 𝑣𝑡+1. All the 𝑃𝑖𝐾.getLast() are compared to pick the shortest segment, then the 
corresponding 𝑣𝑖 is the node to derive new segments, i.e., the deviation node (shown in lines 
16 and 19). In this way, the algorithm does not have to derive new segments from every node 
in the next iteration; it only derives new segment from deviation node, thus time complexity is 
minimized. The above is the main loop of the algorithm, shown in lines 13–20. 

 
Algorithm 3. vKSP(𝑣𝑠, 𝑣𝑡, K, viaList) 

Input: 𝑣𝑠: the source node 
  𝑣𝑡: the destination node 
  𝐾: the number of shortest paths 
  𝑣𝑖𝑎𝐿𝑖𝑠𝑡: intermediate entities must be traversed 
Output:  𝑃𝐾: the K shortest paths set 
 
1: 𝑃𝐾 = ∅;      //𝑃𝐾: shortest paths set. 
2: 𝑃𝐶 = ∅;      //𝑃𝐶: shortest path candidates set 
3:   chain = concatFullChain(𝑣𝑠, 𝑣𝑖𝑎𝐿𝑖𝑠𝑡, 𝑣𝑡); 
4:  for 𝑖 = 1; (𝑖 + 1) ≤ 𝑐ℎ𝑎𝑖𝑛. 𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 + + do 
5:   sPart = dsp(𝑣𝑖,𝑣𝑖+1) → 𝑃𝑖𝐾;  
6:  𝑝1 += sPart; 
7:   nextPath(𝑣𝑖,𝑣𝑖+1) → 𝑃𝑖𝐾 
8:  end for 
9:  if 𝑝1 == 𝑁𝑈𝐿𝐿 then 
10:  return 𝑃𝐾;     //no connectivity from source to target 
11:  end if 
12: 𝑃𝐾 = 𝑃𝐾⋃{𝑝1}; 
13: while ||𝑃𝐾|| < 𝐾 do 
14:   for 𝑖 = 1; (𝑖 + 1) ≤ 𝑐ℎ𝑎𝑖𝑛. 𝑙𝑒𝑛𝑔𝑡ℎ; 𝑖 + + do 
15:    concatNewPaths(𝑃𝑖𝐾) → 𝑃𝐶; 
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16:    let 𝐼 be index of: min(𝑃𝑖𝐾.getLast()); 
17:   end for 
18:   curPath = min(𝑃𝐶) → 𝑃𝐾; 
19:   nextPath(𝑣𝐼,𝑣𝐼+1) → 𝑃𝐼𝐾; 
20:  end while 
21:  return 𝑃𝐾; 
 

4.2.3. Proof and Analysis 
In this section, we analyze the complexity of the algorithm.  

Theorem 2: The complexity of vKSP algorithm is:  𝑂((𝑉 + 𝐾)𝑛(𝑚 + 𝑛𝑙𝑜𝑔𝑛)). 𝑛 is the 
number of nodes, 𝑚 is the number of the links, 𝑉 is the number of the via nodes that must be 
traversed and 𝐾 is the number of paths to be found. 

Proof: The complexity of finding the next shortest path is 𝑂(𝑛(𝑚 + 𝑛𝑙𝑜𝑔𝑛))  (see 
Theorem 1). In the initialization, the second shortest segments must be found for every via 
node. Thus, the complexity is  𝑂(𝑉𝑛(m + 𝑛𝑙𝑜𝑔𝑛)). For every iteration in the main loop, the 
next shortest search is conducted for the deviation node only, thus the complexity is 𝑂((𝑉 +
𝐾)𝑛(𝑚 + 𝑛𝑙𝑜𝑔𝑛)).  

5. Implementation and Experiments 
Our scheme is implemented in the Floodlight [21] controller and Open vSwitch (OVS) [18]. 
The experiments are conducted in the Mininet [22] emulation environment together with our 
modified Floodlight controller and OVS switches. The experiment environment is as follows: 
Intel Core i7-6700 3.4 GHz, 8 GB RAM, Debian 8 64 bit. 

5.1. Experiments on QoS over LLDP 
The QoS over LLDP is tested in a simple topology (see Fig. 3) where a video streaming 
application is deployed. Host h1 is the video server, hosting a video (about 500 MB in size and 
15 min in length) and h3 is the client, streaming the video from h1 using Firefox browser. 
During the streaming, QoS status is constantly changing in bandwidth, delay, etc., due to 
resource consumption.  
 

 
Fig. 3. A Simple Topology for Video Streaming Experiment 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 6, June 2018                                            2547 

5.1.1. Capabilities Test 
We tested the capabilities of QoS over LLDP at first, i.e., whether it is able to successfully and 
timely collects the QoS information. This experiment is taken in the topology present in Fig. 3 
when video is streamed from the video server h1 to the client h3. The initial QoS properties of 
each switch port are set as follows: 5 Mbit bandwidth and 2,500 us delay. While the video is 
being steadily streamed from h1 to h3, QoS properties are changing due to resource 
consumption, which is typically indicated by curves with fluctuations. Fig. 4 is a snapshot of 
the QoS over LLDP frontend GUI. It gives the real-time statistics of various QoS properties of 
port s1-eth4 (i.e., the fourth Ethernet interface eth4 of switch s1), namely bandwidth (shown in 
Fig. 4 (a)), delay (Fig. 4 (b)), jitter (Fig. 4 (c)) and packet loss (Fig. 4 (d)), which proves that 
QoS over LLDP scheme can effectively collect the changing QoS values according to preset 
intervals. The default interval for LLDP is 15 seconds. The interval for our QoS over LLDP 
can be tuned according to precision requirement for QoS monitoring, higher or lower. The 
x-axis uses real time as the scale, and the precision is 1 second in this experiment to intuitively 
demonstrate QoS over LLDP’s capability of QoS information collecting. We can see from Fig. 
4 that QoS properties can be accurately collected and rendered in the frontend. Also, basic 
intuitions can be drawn from these QoS property curves. For example, those measured packet 
losses indicate a high utilization during video streaming; the difference between the preset 
bandwitch (5 Mbit) and the real-time available bandwidth shown in Fig. 4 (a) indicates the 
bandwidth comsumption for the video streaming. QoS over LLDP is also capable of collecting 
QoS information in more complex topology to conduct QoS-aware decision making such as 
top-K QoS-aware path discovery (see Section 5.2).  
 

 
 (a) (b) 

 
 (c) (d) 

Fig. 4. QoS over LLDP Frontend GUI 
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5.1.2. Traffic Analysis 
In order to evaluate the impact on network traffic caused by QoS over LLDP, we capture 
traffic using Wireshark in two scenarios (video streaming vs. no video streaming) with the 
above simple topology. The evaluation duration is 15 min. The evaluation results are shown in 
Table 3. We first analyze “no video streaming” scenario. As we stated above, QoS over LLDP 
causes extra network overhead since it contains several QoS TLV bytes. However, the 
percentages of QoS over LLDP (6.56%) is just slightly greater than pure LLDP (5.27%) by 
bytes, meaning that QoS over LLDP does not deteriorate the network traffic performance. For 
video streaming scenario, QoS over LLDP and pure LLDP take 0.021% and 0.015% of the 
total traffic by bytes, respectively, and 0.59% and 0.58% of the total traffic by packets, 
respectively. This indicates that QoS over LLDP works in a non-invasive and piggyback 
fashion with very minor traffic overhead to achieve QoS information collecting. The 
experiment results indicate that QoS over LLDP is an applicable approach for QoS 
information collecting in an SDN environment. 
 

Table 3. QoS over LLDP vs. LLDP in different scenarios, duration about 15 min 

Scenario Scheme Total 
Packets LLDP Packets Total Bytes LLDP Bytes 

No Video 
Streaming 

Pure LLDP 20173 2567 (12.72%) 6526386 344222 (5.27%) 
QoS over 

LLDP 21889 2563 (11.71%) 6738255 441760 (6.56%) 

Video 
Streaming 

Pure LLDP 440348 2550 (0.58%) 2208747286 339866 (0.015%) 
QoS over 

LLDP 437795 2580 (0.59%) 2086069045 443204 (0.021%) 

 

5.2. Experiments on Paths Discovery 
In this section, we experimented our proposed top-K QoS-aware paths discovery based on 
KSP/vKSP. Our scheme is compared with the path discovery method adopted in SlickFlow [3]. 
SlickFlow is a fault recovery scheme for SDN-enabled data center networks. It features in that 
path discovery is conducted in the controller based on the LLDP-collected topology 
information, as does our system. SlickFlow enumerates all paths and select top-K paths for the 
purpose of fault recovery, i.e., the all-routes scheme, which is quite different from the 
KSP/vKSP. KSP/vKSP does not enumerate all paths; on the contrary, it merely finds the top-K 
paths using deviation method. This is where performance comparison can be made, given two 
different algorithms serving the same purpose of paths discovery. Discussion about SlickFlow 
can also be found in Section 2. 

Experiments are carried out under the mesh topology with different switch numbers and 
switch out degrees (i.e., how many switches are connected from the current switch). Mesh 
topologies offer plenty of alternative paths, which are suitable to test paths discovery 
performance in complex networks. QoS over LLDP is adopted to collect underlying QoS 
information to calculate individual/overall path costs for path ranking (detailed conversion 
algorithms can be found in Section 3.2). QoS properties of every switch port is uniformly 
distributed according to the following configurations: 𝑏𝑤 ∈ [80𝑀𝑏𝑝𝑠, 100𝑀𝑝𝑏𝑠],𝑑𝑙 ∈
[1𝑢𝑠, 10𝑢𝑠], 𝑗𝑡 ∈ [0𝑢𝑠, 2𝑢𝑠],𝑝𝑙 ∈ [0,0.1]. Fig. 5 exhibits a sample mesh topology with 10 
switches and 3 out degrees for each switch. The experiment objective is to test the path 
discovery performance in terms of query time. The experiment procedure is to test how much 
time is required to conduct the path discovery from host h1 to h9 in different topologies 
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through node-constrained (via switches s2, s4 and s6) or unconstrained methods. KSP, vKSP 
and SlickFlow are tested under the same settings.  

 

 
Fig. 5. A Sample Mesh Topology, 10 Switches, 3 Out Degrees (a snapshot from our modified Floodlight 

controller) 
 

Fig. 6 is the experiment results taken under a mesh topology of 10 switches and varying out 
degrees. “UC” in the legend indicates the unconstrained path discovery, i.e., finding paths 
without considering intermediate node constraints, marked as dashed lines. “-3via” in the 
legend means 3 via nodes are considered during path discovery, i.e., the node-constrained path 
discovery, marked as solid lines. For SlickFlow, only one path is to be found due to the 
performance issue, while for KSP and vKSP, several paths are to be found, indicated by 
“-xpaths” in the legend.  
 

 
 

Fig. 6. Experiment under 10 Switches 
 

We explain experiment results in later sections with the specific 5 out degree. Fig. 6 shows 
that the unconstrained SlickFlow-UC (155 ms) performed well. However, KSP-3paths-UC 
(116 ms) still outperformed SlickFlow-UC even though 2 more paths were found. The reason 
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for SlickFlow’s deficiency is that it adopts the all routes method where all the possible routes 
from source to target are enumerated and the best one is then selected. This method is far from 
optimized. We can see from the figure, KSP’s performance scales linearly with path numbers 
as proven in previous sections. However, as the path number increases, more time is required 
for path discovery thus large K (i.e., the path number) is not recommended in large topologies. 
Usually, 3-paths is a desirable tradeoff between performance and the purpose of alternative 
paths. Besides, SlickFlow does not consider QoS, thus paths are purely ranked by length. On 
the other hand, KSP proposed in this paper is a top-K QoS-aware path discovery scheme 
where paths are found and ranked by QoS costs as explained in Section 3 and 4. Table 4, as an 
example, demonstrates the end-to-end QoS properties of the 3 paths found by KSP-3paths-UC. 
These paths are found based on the bandwidth cost (see Table 1 for computation details) 
shown in the last column of Table 4. Lower bandwidth costs indicate better performance in 
bandwidth as shown in Table 4, which, however, do not necessarily indicate better 
performance in other QoS properties. We can see from this table, Path 1 offers widest 
bandwidth (91.2 Mpbs) while it does not provide best jitter performance (3.2 us vs. 1.7us). For 
different applications with different QoS preferrences, other costs (e.g., delay cost, jitter cost, 
packet loss cost) can be used, as explained in Section 3.  

vKSP is capable of finding node-constrained paths. We can see from the figure, vKSP’s 
performance scales linearly with the sum of path numbers and intermediate node numbers as 
proven in previous sections. Therefore, large intermediate node numbers are not 
recommended, as are not for large path numbers. Still, vKSP-5paths-3via offers good 
performance (300 ms) compared with SlickFlow-3via (357 ms) even though more paths are 
found by vKSP.  

 
Table 4. End-to-end QoS Properties of Found Paths 

 

Path Path Details BW (Mbps) DL (us) JT (us) PL BW Cost 
Path 1 h1-s1-s10-s9-h9 91.2 17.8 3.2 0.18% 2.19 
Path 2 h1-s1-s3-s9-h9 83.6 19.3 1.7 0.24% 2.26 
Path 3 h1-s1-s3-s10-s9-h9 80.7 28.7 4.9 0.33% 3.40 

 
Fig. 7 is the experiment results taken under a mesh topology of 20 switches and varying out 

degrees. Similar analysis applies in this experiment setting as well. We can see that more 
complex topologies have obvious performance impact. However, KSP and vKSP still offers 
good performance as proven before. The 5-path node-constrained vKSP-5paths-3via (225 ms) 
gives better performance than the single-path unconstrained SlickFlow-UC (406 ms). Another 
difference between KSP/vKSP and SlickFlow is that KSP/vKSP find optimal paths based on 
path costs which reflect the Quality of Service while SlickFlow does not consider QoS during 
path discovery. In a word, our scheme offers applicable performance in the top-K QoS-aware 
paths discovery for source routing in SDN networks. 
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Fig. 7. Experiment under 20 Switches 

6. Conclusion 
The SDN paradigm offers more application-centric possibilities for source routing. This paper 
augments source routing path discovery with QoS-awareness and alternative paths finding in 
the context of SDN environment. We designed the non-invasive piggyback QoS information 
collecting scheme where no fundamental modification is required. We also derived the KSP 
variations to find the top-K ranked alternative paths, in case of load balancing or backup 
purpose. The experiments exhibit the functionalities and performance of our scheme. The 
performance of our scheme is applicable in QoS-sensitive application scenarios compared 
with previous works, as the experiment results showed. In the future work, our scheme is 
going to be applied in more specific subject of SDN such Service Function Chaining, etc., 
where source routing is a fundamental aspect.  
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