• Title/Summary/Keyword: SCAR markers

Search Result 70, Processing Time 0.023 seconds

Determination of Cytoplasmic Male Sterile Factors in Onion Plants (Allium cepa L.) Using PCR-RFLP and SNP Markers

  • Cho, Kwang-Soo;Yang, Tae-Jin;Hong, Su-Young;Kwon, Young-Seok;Woo, Jong-Gyu;Park, Hyo-Guen
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.411-417
    • /
    • 2006
  • We have developed a polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) marker that can distinguish male-fertile (N) and male-sterile (S) cytoplasm in onions. The PCR-RFLP marker was located in a chloroplast psbA gene amplicon. Digesting the amplicons from different cytoplasm-containing varieties with the restriction enzyme MspI revealed that N-cytoplasm plants have a functional MspI site (CCGG), whereas the S-cytoplasm plants has a substitution in that site (CTGG), and thus no MspI target. The results obtained using this PCR-RFLP marker to distinguish between cytoplasmic male sterile factors in 35 onion varieties corresponded with those using a CMS-specific sequence-characterized amplified region (SCAR) marker. Moreover, the PCR-RFLP marker can identify N- ot S-cytoplasms in DNA sample mixtures in which they are in up to a 10-fold minority, indicating that use of the marker has high diagnostic precision. We also demonstrated the usefulness of the SNP detected in the psbA gene for high-throughput discrimination of CMS factors using Real-time PCR and a TaqMan probe assay.

Molecular Biological Diagnosis of Meloidogyne Species Occurring in Korea

  • Oh, Hyung-Keun;Bae, Chang-Hwan;Kim, Man-Il;Wan, Xinlong;Oh, Seung-Han;Han, Yeon-Soo;Lee, Hyang-Burm;Kim, Ik-Soo
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.247-255
    • /
    • 2009
  • Root-knot nematode species, such as Meloidogyne hapla, M. incognita, M. arenaria, and M. javanica are the most economically notorious nematode pests, causing serious damage to a variety of crops throughout the world. In this study, DNA sequence analyses were performed on the D3 expansion segment of the 28S gene in the ribosomal DNA in an effort to characterize genetic variations in the three Meloidogyne species obtained from Korea and four species from the United States. Further, PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism), SCAR (Sequence Characterized Amplified Region) PCR and RAPD (Randomly Amplified Polymorphic DNA) were also utilized to develop methods for the accurate and rapid species identification of the root-knot nematode species. In the sequence analysis of the D3 expansion segment, only a few nucleotide sequence variations were detected among M. incognita, M. arenaria, and M, javanica, but not M. hapla. As a result of our haplotype analysis, haplotype 5 was shown to be common in M. arenaria, M. incognita, M. javanica, but not in the facultatively parthenogenetic species, M. hapla. PCR-RFLP analysis involving the amplification of the mitochondrial COII and large ribosomal RNA (lrRNA) regions yielded one distinct amplicon for M. hapla at 500 bp, thereby enabling us to distinguish M. hapla from M. incognita, M. arenaria, and M. javanica reproduced via obligate mitotic parthenogenesis. SCAR markers were used to successfully identify the four tested root-knot nematode species. Furthermore, newly attempted RAPD primers for some available root-knot nematodes also provided some species-specific amplification patterns that could also be used to distinguish among root-knot nematode species for quarantine purposes.

Screening of the Dominant Rice Blast Resistance Genes with PCR-based SNP and CAPS Marker in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Hong, Sung-Jun;Kwon, Jin-Hyeuk;Kim, Yeong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.329-341
    • /
    • 2011
  • The objective of this study was to determine the genetic diversities of major rice blast resistance genes among 84 accessions of aromatic rice germplasm. Eighty four accessions were characterized by a dominant 11 set of PCR-based SNP and CAPS marker, which showed the broad spectrum resistance and closest linkage to seven major rice blast resistance (R) genes, Pia, Pib, Pii, Pi5 (Pi3), Pita (Pita-2), and Pi9 (t). The allele specific PCR markers assay genotype of SCAR and STS markers was applied to estimate the presence or absence of PCR amplicons detected with a pair of PCR markers. One indica accession, Basmati (IT211194), showed the positive amplicons of five major rice blast resistance genes, Pia, Pi5 (Pi3), Pib, Pi-ta (Pi-ta2), and Pik-5 (Pish). Among 48 accessions of the PCR amplicons detected with yca72 marker, only five accessions were identified to Pia gene on chromosome 11. The Pib gene was estimated with the NSb marker and was detected in 65 of 84 accessions. This study showed that nine of 84 accessions contained the Pii gene and owned Pi5 (Pi3) in 42 of 84 accessions by JJ817 and JJ113-T markers, which is coclosest with Pii on chromosome 9. Only six accessions were detected two alleles of the Pita or Pita-2 genes. Three of accessions were identified as the Pi9 (t) gene locus.

Validity Test for Molecular Markers Associated with Resistance to Phytophthora Root Rot in Chili Pepper (Capsicum annuum L.) (고추의 역병 저항성과 연관된 분자표지의 효용성 검정)

  • Lee, Won-Phil;Lee, Jun-Dae;Han, Jung-Heon;Kang, Byoung-Cheorl;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.64-72
    • /
    • 2012
  • Phytophthora root rot has been causing a serious yield loss in pepper production. Since 2004, the year in which commercial cultivars resistant to the disease were firstly commercialized, it has been necessary to introduce the resistance into domestic pepper cultivars for dried red pepper. Therefore, developing molecular markers linked to the resistance is required for an accurate selection of resistant plants and increasing breeding efficiency. Until now, several markers associated with the major dominant gene resistant to Phytophthora root rot have been reported but they have some serious limitations for their usage. In this study, we aimed to develop molecular markers linked to the major dominant gene that can be used for almost of all genetic resources resistant to Phytophthora root rot. Two segregating $F_2$ populations derived from a 'Subicho' ${\times}$ 'CM334' combination and a commercial cultivar 'Dokyacheongcheong' were used to develop molecular markers associated with the resistance. After screening 1,024 AFLP primer combinations with bulked segregant analysis, three AFLP (AFLP1, AFLP2, and AFLP3) markers were identified and converted into three CAPS markers (M1-CAPS, M2-CAPS, and M3-CAPS), respectively. Among them, M3-CAPS marker was further studied in ten resistants, fourteen susceptibles, five hybrids and 53 commercial cultivars. As a result, M3-CAPS marker was more fitted to identify Phytophthora resistance than previously reported P5-SNAP and Phyto5.2-SCAR markers. The result indicated that the M3-CAPS marker will be useful for resistance breeding to Phytophthora root rot in chili pepper.

Phylogenetic Relationships and Genetic Diversity in Collected Resources of Carthamus tinctorius by Random Amplified Polymorphic DNA Markers (RAPD 마커에 의한 수집된 홍화자원에서 계통관계와 유전적 다양성)

  • Sung, Jung-Sook;Cho, Gyu-Taek;Lee, Gi-An;Baek, Hyung-Jin;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1764-1771
    • /
    • 2010
  • Carthamus tinctorius L. (Compositae) is an herb primarily distributed throughout in the world. The species is regarded as ecologically important in the world. Safflower was used for medicines, as well as making red (carthamin) and yellow dyes. We have used the RAPD technique to investigate the phylogenetic relationships and genetic diversity of C. tinctorius. We obtained 123 bands from all the 26 cultivars. The average number of bands was 9.5 per primer. The genetic diversity of safflower is found among cultivars and there is a high among-cultivar differentiation. The OPC18-01 band is the specific marker for Syria cultivar, whereas no products were detected in individuals from other country cultivars. We found seven phenetic bands for determining the specific marker of cultivars with SCAR markers. Though the number of individuals sampled for analysis was small and probably not fully representative of the total available diversity in C. tinctorius, this study demonstrates that the regions (Morocco, Syria, and Turkey) of the Mediterranean Sea were more variable than other regions with the exception of India. In this result, although only simple result of RAPD is difficult to assert the center of species diversity of C. tinctorius, the regions of the Mediterranean Sea may be the most probable candidate for the origin of safflower. India was also the candidate of the center or secondary center of species diversity of C. tinctorius. RAPD markers were effective in classifying cultivar levels of safflower.

Fine Mapping of the Rice Bph1 Gene, which Confers Resistance to the Brown Planthopper (Nilaparvata lugens Stal), and Development of STS Markers for Marker-assisted Selection

  • Cha, Young-Soon;Ji, Hyeonso;Yun, Doh-Won;Ahn, Byoung-Ohg;Lee, Myung Chul;Suh, Seok-Cheol;Lee, Chun Seok;Ahn, Eok Keun;Jeon, Yong-Hee;Jin, Il-Doo;Sohn, Jae-Keun;Koh, Hee-Jong;Eun, Moo-Young
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.146-151
    • /
    • 2008
  • The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.

분자유전학적인 기술을 이용한 육 감별법

  • Kim, Tae-Heon
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2000.11a
    • /
    • pp.59-75
    • /
    • 2000
  • This study was carried out to develop a DNA marker for identifying between Korean cattle (Hanwoo) and other breeds. First experiment was performed to isolate Hanwoo specific DNA marker at sequence characterized amplified regions (SCARs). Five breeds of cattle including Hanwoo, Holstein, Hereford, Angus and Charolais were represented with the from 8 to 20 individuals. Fourteen primers of 300 arbitrary primers of 10 nucleotides showed reproducible polymorphism across the breeds. An amplified band of 0.9 kb in the primer MG-3 showed the specificity to Holstein breed. And MG-6 and MG-12 detected the Hereford and Hanwoo specific markers at the size of 2.0 kb and 1.0 kb, respectively. A 1.0 kb band of MG-12 was cloned and sequenced. A SCAR primer was designed based on the obtained sequences. It was possible to identify the Hanwoo from Holstein breed. Second experiment was carried out to observe the genotype frequencies of MC1R in 1,044 samples of imported beef and eight different cattle breeds including Hanwoo, Holstein, Angus, Brown-Swiss, Charolais, Limousin, Simmental and Hereford. The primers for the amplification of bovine MC1R gene were designed based on a bovine MC1R gene sequence (GenBank accession no.Y19103). A size of 350 bp was amplified by polymerase chain reaction(PCR), digested with two different restriction enzyme, BsrFI and MspA II, and electrophoresed in 2.5% Metaphore agarose gel for determination of genotypes. Genotype frequencies of Hanwoo were 0.10 in E+e and 0.90 in ee. Allele ED was shown in all of Holstein and Angus breeds tested which have black coat color phenotypes. We suggested that SCAR marker and the bovine MC1R gene could be used as a DNA marker for distinguishing beef between Hanwoo and Holstein.

  • PDF

Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii

  • Lee, Song Hee;Ali, Asjad;Ha, Byeongsuk;Kim, Min-Keun;Kong, Won-Sik;Ryu, Jae-San
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.200-206
    • /
    • 2019
  • Allelic differences in A and B mating-type loci are a prerequisite for the progression of mating in the genus Pleurotus eryngii; thus, the crossing is hampered by this biological barrier in inbreeding. Molecular markers linked to mating types of P. eryngii KNR2312 were investigated with randomly amplified polymorphic DNA to enhance crossing efficiency. An A4-linked sequence was identified and used to find the adjacent genomic region with the entire motif of the A locus from a contig sequenced by PacBio. The sequence-characterized amplified region marker $7-2_{299}$ distinguished A4 mating-type monokaryons from KNR2312 and other strains. A BLAST search of flanked sequences revealed that the A4 locus had a general feature consisting of the putative HD1 and HD2 genes. Both putative HD transcription factors contain a homeodomain sequence and a nuclear localization sequence; however, valid dimerization motifs were found only in the HD1 protein. The ACAAT motif, which was reported to have relevance to sex determination, was found in the intergenic region. The SCAR marker could be applicable in the classification of mating types in the P. eryngii breeding program, and the A4 locus could be the basis for a multi-allele detection marker.