• Title/Summary/Keyword: SBR Process

Search Result 162, Processing Time 0.022 seconds

Combination of Sequential Batch Reactor (SBR) and Dissolved Ozone Flotation-Pressurized Ozone Oxidation (DOF-PO2) Processes for Treatment of Pigment Processing Wastewater

  • Kim, Jeong-Hyun;Kim, Hyung-Suk;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • This study investigates the treatment of pigment wastewater using a sequential batch reactor (SBR) followed by dissolved ozone flotation-pressurized ozone oxidation treatement (DOF-$PO_2$). The process efficiency has been evaluated at the lab scale on the basis of water quality parameters. In addition, the effect of pure oxygen and air was investigated on the removal of COD, BOD, and TN in the SBR process. It was observed that under comparable conditions the removal efficiencies of these water quality parameters using pure oxygen and air were similar. The effect of the recycle rate was also investigated for its impact on the water quality parameters using different ozone dissolving pressures in a DOF process in order to optimise conditions. The results conclude that the use of an SBR and ozone contact by DOF-$PO_2$ is a highly effective treatment for pigment wastewater and aids in the achievement of effluent discharge criteria.

Nitrogen and Phosphorus Removal in Domestic Wastewater using SBR Process with Flow Changing Continuous Feed and Cyclic Draw (교대연속유입식 SBR 공정을 이용한 하수중의 질소 및 인 제거)

  • Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Ji-yeon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.203-208
    • /
    • 2006
  • A continuous feed and cyclic draw SBR process was developed to overcome flow rate fluctuation and to maximize organic matters utilization efficiency for nitrogen and phosphorus removal. The developed SBR process was operated with two parallel reactors. Influent was supplied to one reactor which was not obligately aerated. At the same time, the other reactor was just aerated without supplying influent. In addition this mode was changed periodically. Cycle time was 6hr and aeration time ratio($t_{aer}/t_{total}$) was 0.33, respectively. $COD_{cr}$ and SS removal efficiencies of 95% or higher were achieved. Nitrogen removal was so greatly influenced by influent $COD_{cr}/T-N$ ratio. At influent $COD_{cr}/T-N$ ratio of 5.7, removal efficiencies of ammonia-N, T-N and T-P were 96%, 78% and 55%, respectively. Influent $COD_{cr}/T-N$ of 4 or higher ratio was necessary to achieve 60% or higher nitrogen removal. Organic matters of influent was efficiently utilized in denitrification reaction and consumed COD has a good correlation with removed T-N(about 6.5 mgCOD/mgTN). Continuous feed and cyclic draw SBR process could be one of alternative processes for the removal of nutrients in rural area where $COD_{cr}/T-N$ ratio was low and fluctuation of flow rate was severe.

Lad-Scale Sequencing Batch Reactor for the optimum treatment of Ship sewage

  • Park, Sang-Ho;Kim, In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.315-320
    • /
    • 2006
  • There have been several problems in treating shipboard sewage due to special environmental conditions of ship, such as limited space, rolling and pitching, change of temperature and so on. It was suggested that Sequence Batch Reactor (SBR) might be suitable process for overcome these problems in terms of small size, high capacity of treating wastewater and full automation. In this study a SBR process was employed for biological treatment of organic wastes in the shipboard sewage. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. More than 95% of chemical oxygen demand(COD) were removed. In addition, about 97% of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged 93%. A disturbance operation caused by the treatment of Methylene Blue Active Substances(MBAS) was not observed.

  • PDF

Effective Treatment System for the Leachate from a Small-Scale Municipal Waste Landfill (소규모 쓰레기 매립장 침출수의 효율적인 처리 방안에 관한 연구)

  • Cho Young-Ha;Kwon Jae Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This study was carried out to apply some basic physical and chemical treatment options including Fenton's oxidation, and to evaluate the performances and the characteristics of organic and nitrogen removal using lab-scale biological treatment system such as complete-mixing activated sludge and sequencing batch reactor(SBR) processes for the treatment of leachate from a municipal waste landfill in Gyeongnam province. The results were as follows: Chemical coagulation experiments using aluminium sulfate, ferrous sulfate and ferric chloride resulted in leachate CO $D_{Cr}$ removal of 32%, 23% and 21 % with optimum reaction dose ranges of 10,000~15,000 mg/$\ell$, 1,000 mg/$\ell$ and 500~2,000 mg/$\ell$, respectively. Fenton's oxidation required the optimum conditions including pH 3.5, 6 hours of reaction time, and hydrogen peroxide and ferrous sulfate concentrations of 2,000 ~ 3,000 mg/$\ell$ each with 1:1 weight ratio to remove more than 50% of COD in the leachate containing CO $D_{Cr}$ between 2,000 ~ 3,000 mg/$\ell$. Air-stripping achieved to remove more than 97% of N $H_3$-N in the leachate in spite of requiring high cost of chemicals and extensive stripping time, and, however, zeolite treatment removing 94% of N $H_3$-N showed high selectivity to N $H^{+}$ ion and much faster removal rate than air-stripping. The result from lab-scale experiment using a complete-mixing activated sludge process showed that biological treatability tended to increase more or less as HRT increased or F/M ratio decreased, and, however, COD removal efficiency was very poor by showing only 36% at HRT of 29 days. While COD removal was achieved more during Fenton's oxidation as compared to alum treatment for the landfill leachate, the ratio of BOD/COD after Fenton's oxidation considerably increased, and the consecutive activated sludge process significantly reduced organic strength to remove 50% of CO $D_{Cr}$ and 95% of BO $D_{5}$ . The SBR process was generally more capable of removing organics and nitrogen in the leachate than complete-mixing activated sludge process to achieve 74% removal of influent CO $D_{Cr}$ , 98% of BO $D_{5}$ and especially 99% of N $H_3$-N. However, organic removal rates of the SBR processes pre-treated with air-stripping and with zeolite were not much different with those without pre-treatment, and the SBR process treated with powdered activated carbon showed a little higher rate of CO $D_{Cr}$ removal than the process without any treatment. In conclusion, the biological treatment process using SBR proved to be the most applicable for the treatment of organic contents and nitrogen simultaneously and effectively in the landfill leachate.e.

Study on the Effect of SBR Latex on the Properties of Soil Pavement (SBR Latex를 이용한 흙 포장의 재료특성 연구)

  • Lee, Sang Yum;Hwang, Sung Do;Yang, Sung Lin
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.73-82
    • /
    • 2014
  • PURPOSES : The purpose of this study is to determine the optimum addition rate of SBR latex through the evaluation of durability and strength of SBR latex applied soil pavement. Formerly used materials such as fly ash and cement in soil pavement had resulted in decreased durability due to micro crack by heat of hydration and shrinkage crack in winter. However, that agglutinated polymers help adhesion to aggregate increased comes up with preventing the crack opening when the number of capillary tubes of SBR latex get decreased in the hydration process of cement. Therefore, in this study, it is suggested that the evaluation of the field applicability of soil pavement be conducted through the performance lab test in terms of strength increment, adhesion improvement, and crack resistance based on SBR latex addition rate. METHODS : In order to evaluate the field applicability of soil pavement, SBR latex was added 0 to 3% by 1% increment, with fixed cement contents of 3% and 5%. The resistance of shear failure and crack of soil pavement were evaluated by performing the uniaxial compressive strength test and indirect tensile strength test at -20 and $20^{\circ}C$, respectively. RESULTSCONCLUSIONS : It was found out that from both tests, resistance of shear failure and crack were improved with increment of curing time, and especially more than 2% of SBR latex addition rate and 5% cement content gave better results.

Analysis of Environmental Process for Commercial Rubbers using Thermal Degradation (열분해를 이용한 범용고무의 환경친화적 처리공정 해석)

  • Kim, Won-Il;Lee, Seung-Bum;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.272-280
    • /
    • 2000
  • The experimental kinetics was analyzed for commercial rubbers such as NR, IR, BR, SBR 1500, and SBR 1700. Kinetic analysis for the commercial rubbers was performed using a thermogravimetric method, which the activation energies of NR obtained by Kissinger, Friedman, ana Ozawa's method were 195.0, 198.3, and 186.3 kJ/mol, respectively. whereas that of SBR 1500 were 246.4, 247.5, and 254.8 kJ/mol, respectively. It was shown that the yield of pyrolytic oil was generally increased with increasing the final temperature. Considering the effect of heating rate. it was found that the yield of pyrolytic oil was not consistent for each sample. The number average molecular weight of pyrolitic oil of SBR 1500 was in the range of 740-2486. The calorific value of SBR 1500 was 39-40 kJ/g, and it might be a considerable energy potential although it was lower than the conventional fuel such as kerosene, diesel, light fuel, and heavy fuel.

  • PDF

Changes of the Bacterial Community Structure Depending on Carbon Source in Biological Phosphate Removing Process (생물학적 인 제거 공정에서 탄소원에 따른 미생물군집구조의 변화)

  • Yeo, Sang-Min;Lee, Young-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.165-172
    • /
    • 2006
  • In order to analyze the bacterial community structure including P-removal related organisms, PAOs(polyphosphate accumulating organisms) and GAOs(glycogen-accumulating non-poly-P organisms) occurred in biological phosphate removing process, 2 reactors(SBR; sequencing batch reactor) were operated on different carbon sources(sodium acetate, glucose). For the analysis of bacterial community structure, molecular methods(FISH: fluorescent in situ hybridization and DGGE; denaturing gel gradient electrophoresis) were employed. After 100 days reaction, $PO_4-P$ in effluent dropped to 3.92 mg/L in SBR #1(60.8% removal) fed by sodium acetate, and at the same time FISH results showed that ${\beta}$-subclass proteobacteria(39.67%) and PAOs(45.10%) were dominantly present whereas those value in SBR #2 fed by glucose was 8.30 mg/L(17% removal), and ${\gamma}$-subclass proteobacteria were considerably observed(23.89%) and PAOs was 21.42%. Also the result of DGGE indicated that ${\beta}$-subclass proteobacteria was dominantly observed in SBR #1. However as the temperature increased, the proportion of ${\beta}$-subclass proteobacteria and PAOs decreased, but phosphorus removing inhibitors(GAOs) increased. It suggests that the environmental factor like as temperature and types of carbon source had influence on the prevalence of phosphorus removing organism(PAOs) and phosphorus removing inhibitors(GAOs) in biological phosphate removing process.

Defect Analysis of the SBR Wastewater Treatment Plant for Unmanned Automation Based on Time-series Data Mining (시계열 데이터 마이닝을 이용한 하수처리 연속 회분식 반응기 장비 진단)

  • Bae, Hyeon;Choi, Dae-Won;Cheon, Seong-Pyo;Kim, Sung-Shin;Kim, Ye-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.431-436
    • /
    • 2005
  • This paper describes how to diagnose SBR plant equipment using time-series data mining. It shows the equipment diagnostics based upon vibration signals that are acquired front each device lot process control. Data transform techniques including two data preprocessing skills and data mining methods were employed in the data analysis. The proposed method is not only suitable for SBR equipment, but is also suitable for other Industrial devices. The experimental results performed on a lab-scale SBR plant show a good equip-ment-management performance.

Determination of Abrasion Rate of SBR Rubber Compounds using a Knife-blade Abrader (칼날형 마모시험기를 이용한 SBR 배합고무의 마모속도 결정)

  • Kim, Dong-Hui;Kaang, Shinyoung
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.149-154
    • /
    • 2014
  • Friction and abrasion behaviors were investigated for SBR rubber compounds reinforced by silica and carbon black. Knife-blade abrader, newly designed based on tearing energy theory, was utilized in order to evaluate the effect of frictional work on the wear rate of the rubber compounds. It was found that the power law relation between frictional work and wear rate worked, in which as the wear rate was increased as frictional work increased. The wear rate could be determined successfully using the knife-blade abrader in which a moving distance of the knife blade in the process of wearing was measured continuously, instead of intermittent measurements of weight loss by wear during experiment.

Advanced Wastewater Treatment Process Using Aerobic Granular Sludge (AGS-SBR) (호기성 그래뉼 슬러지를 이용한 하수고도처리기술(AGS-SBR))

  • Choi, Han Na;Mo, Woo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • Aerobic granular sludge (AGS) can be classified as a type of self-immobilized microbial aggregates measuring more than 0.2 mm. It offers the option to simultaneously remove COD, N, and P that occur in different zones inside a granule. Also, AGS is characterized by high precipitability, treatability with high organic loading, and high tolerance to low temperature. In this study, a sequencing batch reactor inoculated with AGS (AGS-SBR) is a new advanced wastewater treatment process that was proven to grow AGS with integrated nutrient removal and low C/N ratio. A pilot plant, AGS-SBR with a capacity of 225 ㎥/d was installed at an S sewage treatment plant in Gyeonggi-do. The results of the operation showed that the water quality of the effluent indicated that the value of BOD5 was 1.5 mg/L, CODMn was 11.4 mg/L, SS was 6.2 mg/L, T-N was 13.2 mg/L, and T-P was 0.197 mg/L, and all of these values reliably satisfied an effluent standard (I Area). In winter, the T-N treatment efficiency at a lower temperature of less than 11℃ also showed reliability to meet the effluent standard of the I Area (20 mg/L or less). Analysis of microbial community in AGS showed a higher preponderance of beneficial microorganisms involved in denitrification and phosphorus accumulation compared with activated sludge. The power consumption and sludge disposal cost were reduced by 34.7% and 54.9%, respectively, compared to the domestic SBR type sewage treatment plant with a processing capacity of 1,000 ㎥/d or less.