• Title/Summary/Keyword: SAg

Search Result 706, Processing Time 0.024 seconds

Analysis of Voltage Sag on Power Distribution System (배전시스템센서의 순간전압강하 분석)

  • Oh, Jung-Hwan;Rim, Seong-Jeong;Yun, Sang-Yun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.954-957
    • /
    • 1997
  • In this paper, we analyze the voltage sag caused by reclosing on electric power distribution system. When a fault is on the electric system, a reclosing operation brings a voltage sag on the feeders which is supplied with a common substation transformer. By analyzing the fault wave-form measured in the field, it is showed that a voltage sag is in proportion to a fault current. Also, we propose an adaptive reclosing scheme. This scheme changes the number of reclosing as a function of the magnitude of a fault voltage and the fault type. As the proposed scheme is compared with conventional scheme in the side of voltage sag and permanent fault, it is verified that the proposed scheme is more effective than conventional scheme.

  • PDF

Dynamic Voltage Restorer(DVR) with a Z-Source AC Converter Topology (Z-소스 교류 컨버터 토폴로지의 동적 전압 보상기)

  • Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.36-43
    • /
    • 2010
  • This paper proposes a new type of voltage sag-swell compensator based on a Z-source AC-AC converter. The proposed topology employs a pulse width modulation (PWM) Z-source AC-AC converter along with a injection transformer. A safe commutation strategy is used to eliminate voltage spikes on switches without snubber circuit. During a voltage sag or swell, the proposed system controls the adding or missing voltage and maintains the rated voltage of sinusoidal waveform at the terminals of the critical loads. The proposed system is able to compensate 20[%] voltage swell and is also able to compensate 60[%] voltage sag. In order to control and detect the voltage sag and swell, the peak voltage detection method is applied. Also, the operating principles of the proposed system are described, and a circuit analysis is provided. Finally, PSIM simulation and experimental results are presented to verify the proposed concept and theoretical analysis.

Voltage Sag and Swell Generator with Solid-State Switched Tap Changer (Solid-State Switched Tap Changer를 of용한 Voltage Sag and Swell 발생장치에 대한 연구)

  • Park, Tae-Bum;Chung, Yong-Ho;Kwon, Gi-Hyun;Lim, Kye-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.3-5
    • /
    • 2003
  • 본 논문은 DVR과 DSTATCOM 같은 수 MVA급 용량의 CPD (Custom Power Device)를 평가하기 위한 Sag 및 Swell 전압 발생 장치에 사용될 두 가지 형태의 새로운 회로 방식에 관한 것이다. 제안된 Sag 및 Swell 전압 발생 장치는 계통선로에 직렬로 연결된 직렬 변압기를 통해 다양한 형태로 전압을 발생 시킬 수 있으며, 전격회로는 Solid-State Switched Tap Changer와 AC-Chopper 두 가지 방식을 이용하고 있다. 본 논문에서는 제안된 각각의 방식에 대한 고조파 분석을 하였고, 또한 시뮬레이션을 통해서 제안된 Sag 및 Swell 전압 발생장치를 통해서 원하는 형태의 전압을 얻을 수 있음을 확인하였다.

  • PDF

Design and Implementation of Low Cost Boost Type Single-Phase Inverter System for Compensation of Voltage Sag (순간전압강하 보상을 위한 저가의 승압형 단상 인버터 시스템의 설계 및 구현)

  • Lee, Seung-Yong;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2012
  • In this paper, a 300[W] class boost type single-phase inverter system which can compensate voltage sag on source side is designed and implemented. This system is a two-stage conversion system composed of a boost converter and a PWM inverter. If the voltage sag has appeared at the point of common coupling, the boost converter would be operated to compensate it. The boost converter and the inverter were constructed on single smart power module(SPM) to implement low cost system. The system is designed for that the THD of output voltage is below 5[%]. Finally, the validity of the design for the inverter system is verified by both simulations and experiments.

Voltage Sag and Swell Estimation Using ANFIS for Power System Applications

  • Malmurugan, N.;Gopal, Devarajan;Lho, Young Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.272-277
    • /
    • 2013
  • Power quality is a term that is now extensively used in power systems applications, and in this context the voltage, current, and phase angle are discussed widely. In particular, different algorithms that are capable of detecting the voltage sag and swell information in a real time environment have been proposed and developed. Voltage sag and swell play an important role in determining the stability, quality, and operation of a power system. This paper presents ANFIS (Adaptive Network based Fuzzy Inference System) models with different membership functions to build the voltage shape with the knowledge of known system parameters, and detect voltage sag and swell accurately. The performance of each method has been compared with each other/other methods to determine the effectiveness of the different models, and the results are presented.

Analysis of voltage sag characteristics according to loads (부하에 따른 voltage sag의 특성 분석)

  • Choi, Hyun-Young;Ryu, Hyoung-Sun;Oh, Se-Ho;Park, Jung-Gyun;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.236-238
    • /
    • 2001
  • Voltage sags are known as a serious problem causing mal-operation of equipment, process controllers and adjustable-speed drives. In this paper various analysis techniques for voltage sags will be presented, voltage sag characterization, equipment behaviour during voltage sag, stochastic assessment of voltage sags. And possible solution to voltage sag sensitivity problems are also described.

  • PDF

Implementation of a Non-Linear Adaptive Filter Based Sag Detection Method for Dynamic Voltage Restorers under Unbalanced Fault Conditions

  • Cuma, M. Ugras;Teke, Ahmet;Meral, M. Emin;Bayindir, K. Cagatay;Tumay, Mehmet
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.304-312
    • /
    • 2013
  • The most common power quality problems in distribution systems are related to unbalanced voltage sags. Voltage sags must be detected quickly and corrected in a minimum amount of time. One of the most widely used methods for sag detection is based on the d-q transformation. This method has the disadvantage of missing the detection of unbalanced faults, because this method uses a voltage sag level signal obtained from the average of 3 phases for sag detection. In this paper, an adaptive filter sag detection method is proposed for Dynamic Voltage Restorers (DVR) under unbalanced fault conditions. The proposed DVR controller is able to detect balanced, unbalanced and single phase voltage sags. A novel reference voltage generation method is also presented. To validate the proposed control methods, a 3-phase DSP controlling a DVR prototype with a power rating of 1.5-kVA has been developed. Finally, experimental results are presented to verify the performance of the proposed control methods.

Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Development of a Voltage Sag Assessment Program Considering Generator Scheduling and Voltage Tolerance (발전기 스케줄링과 부하 전압민감도를 고려한 순간전압강하 평가 프로그램 개발)

  • Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.92-100
    • /
    • 2009
  • This paper presents a voltage sag assessment program. The program provides various functions for stochastic assessment of voltage sags such as short-circuit analysis, the determination of the area of vulnerability and the calculation of expected sag frequency(ESF). Effective data visualization functions based on computer graphics and animation were also implemented in the developed program. In this paper, the concept of voltage sag assessment and the assessment method considering generator scheduling and time-varying fault rates are presented. The influence of generator scheduling and time-varying fault rates on voltage sag prediction is also described by performing case studies using the developed program.

Analysis on Voltage Sag According to Impedance and Application Location of SFCL with Recloser-Recloser Coordination (재폐로차단기간 보호협조 동작시 초전도한류기 적용위치 및 임피던스에 따른 순간저전압 분석)

  • Kim, Yi-Gwan;Noh, Shin-Eui;Kim, Jin-Seok;Kim, Jae-Chul;Lim, Sung-Hun;Kim, Hye-Rim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.230-236
    • /
    • 2014
  • Superconducting fault current limiter (SFCL) has been expected as one of more effective solutions for decreasing fault current instantaneously and various types of SFCLs have been developed to apply into real power system. Recently, the application of the SFCL in a power distribution system has been reported to be contributed to the suppression of the voltage sag as well as the limitation of the fault current. However, the suppressing effect of voltage sag by the SFCL depends on component of its impedance and its application location in a power distribution system considering the recloser-recloser coordination. This paper analyzed the voltage sag caused by recloser-recloser coordination in a power distribution system and the suppression of the voltage sag due to the application location of the SFCL in a power distribution system was discussed through the PSCAD/EMTDC simulation.