• Title/Summary/Keyword: SAXS

Search Result 79, Processing Time 0.031 seconds

Vibrational Spectroscopic Studies of Crystallization in Mixed n-Paraffins (진동분광실험을 이용한 n-Paraffin혼합물의 결정화에 관한 연구)

  • 김도균;임현주;최선남;김성수;송기국
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.752-758
    • /
    • 2002
  • FTIR, FT-Raman, and X-ray diffraction techniques were used to determine chain segregations and lamellar structures of the mixed binary n-paraffins with different chain lengths. The results of three different techniques, infrared spectroscopic studies of crystal field splitting, the Raman longitudinal acoustic mode, and the SAXS long period measurements were compared one another to understand the crystallization mechanism of separated or mixed n- paraffin lamellae.

Preparation and Characterization of Nafion Composite Membranes Containing 1-ethyl-3-methylimidazolium Tetracyanoborate

  • Shin, Mun-Sik;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • The composite membranes using Nafion as matrix and 1-ethyl-3-methylimidazolium tetracyanoborate (EMITCB) as ion-conducting medium in replacement of water were prepared and characterized. The amount of EMITCB in Nafion varied from 30 to 50wt%. The composite membranes are characterized by ion conductivity, thermogravitational analyses (TGA) and small-angle X-ray scattering (SAXS). The composite membranes containing EMITCB of 40wt% showed the maximum ionic conductivity which was ~0.0146 S $cm^{-1}$ at 423.15 K. It is inferred that the decrease in ionic conductivity of all the composite membranes might be due to the decomposition of a tetracyanoboric acid formed in the composite membranes. The results of SAXS indicated that the ionic clusters to conduct proton in the composite membranes were successfully formed. In accordance with the results of ionic conductivity as a function of a reciprocal temperature, SAXS showed a proportional decrease in scattering maximum $q_{max}$ as the amount of EMITCB increases in the composite membranes, which results in the increase in ionomer cluster size. The TGA showed no significant decomposition of the ionic liquid as well as the composite membranes in the range of operating temperature ($120-150^{\circ}C$) of high temperature proton exchange membrane fuel cells (HTPEMFC). As a result, EMITCB is able to play an important role in transferring proton in the composite membranes at elevated temperatures with no external humidification for proton exchange membrane fuel cells.

Structure Analysis of Liquid Crystal Emulsions Using X-ray Scattering Analysis (X선 산란분석법을 이용한 액정에멀젼 구조분석)

  • Park, So Hyun;Kim, Su Ji;Noh, Min Joo;Lee, Jun Bae;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.297-302
    • /
    • 2016
  • In this study, we prepared liquid crystal emulsions composed of $C_{12-20}$ alkyl glucoside, $C_{14-22}$ alcohol, and behenyl alcohol and performed structure analysis using various analytical equipment. First, as an important characteristic of liquid crystal emulsions, maltese cross patterns and multi-layer structure were observed by a polarized microscope and cryo-SEM. Also, formation of liquid crystal phase was confirmed by DSC and multi-layer lamellar structure having an interlayer spacing approximately $305{\AA}$ was confirmed by small angle x-ray scattering (SAXS). The alkyl chain arrangement formed orthorhombic structure of a lamellar structure of the liquid crystal emulsion was confirmed by wide angle x-ray scattering (WAXS). These results suggest that information on the various physical properties obtained through the research of liquid crystal emulsion structure is expected to be widely used in cosmetics development in the future.

Preparation of Mesoporous and Spherical-shaped Silica Particles by Spray Pyrolysis (분무열분해 공정을 이용한 메조기공을 가지는 실리카 구형입자의 제조)

  • Baek, Chul-Min;Jung, Kyeong Youl;Park, Kyun Young;Park, Seung Bin;Cho, Sung Baek
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.880-885
    • /
    • 2008
  • Spray pyrolysis was applied to prepare spherical silica particles with mesopores of a regular structure. The physical properties such as surface area, pore size, pore structure, particle size, and morphology were studied by BET, SEM, SAXS, and DLS analysis. At a fixed gas flow rate, the BET surface area changed from 200 to $1,290m^2/g$ as changing the CTAB/TEOS molar ratio from 0.05 to 0.3. At a fixed CTAB/TEOS ratio, the surface area of silica particles was varied from 1,062 to $1,305m^2/g$ with changing the gas flow rate from 10 to 40 l/min. The average pore size measured by BJH desorption was about $21{\sim}23{\AA}$ and not significantly influenced by the CTAB/TEOS ratio and the gas flow rate. Finally, the highest surface area which was $1,305m^2/g$ were obtained when the CTAB/TEOS ratio and the gas flow rate were 0.2 and 20 l/min, respectively. According to SAXS analysis, the prepared silica particles showed a strong peak at $2{\theta}=2.6^{\circ}$ and two minor peaks around $2{\theta}=4.4^{\circ}$ and $5.1^{\circ}$, which are due to regular mesopores of hexagonal structure. The morphology of silica particles prepared were spherical shape and the average particle size was $1.0{\mu}m$.

Olefin Separation Performances and Coordination Behaviors of Facilitated Transport Membranes Based on Poly(styrene-b-isoprene-b-styrene)/Silver Salt Complexes

  • Lee, Dong-Hoon;Kang, Yong-Soo;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.104-109
    • /
    • 2009
  • Solid-state facilitated, olefin transport membranes were prepared by complexation of poly(styrene-b-iso-prene-b-styrene) (SIS) block copolymer and silver salt. Facilitated olefin transport was not observed up to a silver mole fraction of 0.14, representing a threshold concentration, above which transport increased almost linearly with increasing silver salt concentration. This was because firstly the silver ions were selectively coordinated with the C=C bonds of PI blocks up to a silver mole fraction of 0.20, and secondly the coordinative interaction of the silver ions with the aliphatic C=C bond was stronger than that with the aromatic C=C bond, as confirmed by FT-Raman spectroscopy. Small angle X-ray scattering (SAXS) analysis showed that the cylindrical morphology of the neat SIS block copolymer was changed to a disordered structure at low silver concentrations ($0.01{\sim}0.02$). However, at intermediate silver concentrations ($0.15{\sim}0.20$), disordered-ordered structural changes occurred and finally returned to a disordered structure again at higher silver concentrations (>0.33). These results demonstrated that the facilitated olefin transport of SIS/silver salt complex membrancs was significantly affected by their coordinative interactions and nano-structural morphology.

Selective Coordination of Silver Ions to Poly(styrene-b-(ethylene-co-butylene)-b-styrene) and its Influence on Morphology and Facilitated Olefin Transport

  • Lee, Dong-Hoon;Kang, Yong-Soo;Kim, Jong-Hak;Kang, Sang-Wook
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.676-681
    • /
    • 2008
  • The $\pi$-complex membranes of poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) of two silver salts of $AgBF_4$ and $AgCF_3SO_3$ were prepared and tested for the separation of the propylene/propane mixtures. The Fourier-transform infrared (FT-IR) spectra of these complexes showed that the silver salts were dissolved in SEBS up to a silver mole fraction of 0.14, due to $\pi$-complexation between the aromatic C=C bonds of styrene blocks and silver ions. Above this solubility limit, ion pairs and high-order ionic aggregates began to form, so that silver salts were distributed unselectively in both the EB and PS blocks. The domain size of the PS blocks was enlarged up to this critical concentration with increasing silver concentration without structural transitions, as confirmed by small angle x-ray scattering (SAXS). These structural properties of the SEBS/silver salt complexes may explain the lower separation properties for propylene/propane mixtures compared to poly(styrene-b-butadiene-b-styrene)(SBS)/silver salt complex membranes.

SAXS and AFM Study on Porous Silicon Prepared by Anodic Etching in HF-based Solution (SAXS와 AFM에 의한 HF-용액내 양극 에칭에 의해 제조된 기공성 실리콘의 구조연구)

  • Kim, Eu-gene;Kim, Hwa-Joong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1218-1223
    • /
    • 2004
  • Porous silicon materials have been shown to have bright prospects for applications in light emitting, solar cell, as well as light- and chemical-sensing devices. In this report, structures of porous silicon prepared by anodic etching in HF-based solution with various etching times were studied in detail by Atomic Force Microscopy and Small Angle X -ray Scattering technique using the high energy beam line at Pohang Light Source in Korea. The results showed the coexistence of the various pores with nanometer and submicrometer scales. For nanameter size pores, the mixed ones with two different shapes were identified: the larger ones in cylindrical shape and the smaller ones in spherical shape. Volume fractions of the cylindrical and the spherical pores were about equal and remained unchanged at all etching times investigated. On the whole uniform values of the specific surface area and of the size parameters of the pores were observed except for the larger specific surface area for the sample with the short etching time. The results implies that etching process causes the inner surfaces to become smoother while new pores are being generated. In all SAXS data at large Q vectors, Porod slope of -4 was observed, which supports the fact that the pores have smooth surfaces.

Phase Behavior of a PEO-PPO-PEO Triblock Copolymer in Aqueous Solutions: Two Gelation Mechanisms

  • Park, Moon-Jeong;Kookheon Char;Kim, Hong-Doo;Lee, Chang-Hee;Seong, Baek-Seok;Han, Young-Soo
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.325-331
    • /
    • 2002
  • Phase behavior of a PEO-PPO-PEO (Pluronic P103) triblock copolymer in water is investigated using small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and rheology. Pluronic P103 shows apparent two gel states in different temperature regions. The first sol-to-gel transition at a lower temperature (i.e., the hard gel I state) turns out to be the hexagonal microphase as evidenced by the combined SANS and SAXS and the frequency dependence of both G′ and G" in rheology. In contrast to the hard gel I, the second sol-to-gel transition (i. e., the hard gel II state) at a higher temperature represents the block copolymer micelles in somewhat disordered state rather than the ordered state seen in the hard gel I. Moreover, turbidity change depending only on the temperature with four distinct regions is observed and the large aggregates with size larger than 5,000 nm are detected with DLS in the turbid solution region. Based upon the present study, two different gelation mechanisms for aqueous PEO-PPO-PEO triblock copolymer solutions are proposed.