• Title/Summary/Keyword: SATELLITE IMAGE

Search Result 2,146, Processing Time 0.026 seconds

The impact of land use and land cover changes on land surface temperature in the Yangon Urban Area, Myanmar

  • Yee, Khin Mar;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • Yangon Mega City is densely populated and most urbanization area of Myanmar. Rapid urbanization is the main causes of Land Use and Land Cover (LULC) change and they impact on Land Surface Temperature (LST). The objectives of this study were to investigate on the LST with respect to LULC of Yangon Mega City. For this research, Landsat satellite images of 1996, 2006 and 2014 of Yangon Area were used. Supervised classification with the region of interest and calculated change detection. Ground check points used 348 points for accuracy assessment. The overall accuracy indicated 89.94 percent. The result of this paper, the vegetation area decreased from $1061.08sq\;km^2$ (24.5%) in 1996 to $483.53sq\;km^2$ (11.2%) in 2014 and built up area clearly increased from $485.33sq\;km^2$ (11.2%) in 1996 to $1435.72sq\;km^2$ (33.1%) in 2014. Although the land surface temperature was higher in built up area and bare land, lower value in cultivated land, vegetation and water area. The results of the image processing pointed out that land surface temperature increased from $23^{\circ}C$, $26^{\circ}C$ and $27^{\circ}C$ to $36^{\circ}C$, $42^{\circ}C$ and $43.3^{\circ}C$ for three periods. The findings of this paper revealed a notable changes of land use and land cover and land surface temperature for the future heat management of sustainable urban planning for Yangon Mega city. The relationship of regression experienced between LULC and LST can be found gradually stronger from 0.8323 in 1996, 0.8929 in 2006 and 0.9424 in 2014 respectively.

An Analysis of Soil Moisture Using Satellite Image and Neuro-Fuzzy Model (위성영상과 퍼지-신경회로망 모형을 이용한 토양수분 분석)

  • Yu, Myung-Su;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.154-154
    • /
    • 2012
  • 지표에서의 토양수분은 작은 구성비를 가짐에도 불구하고 여러 수문 현상을 연계하는 매우 중요한 인자로써 최근 관련 연구가 활발하게 진행되고 있다. 토양수분은 침투나 침루를 통하여 강우와 지하수를 연결하는 기능을 함과 동시에 강우사상에 따른 유출특성에 직접적인 영향을 미치며 증발산을 통하여 에너지 순환을 연결하는 중요한 기능을 한다. 토양수분을 측정하는 방법에는 세타 탐침(Theta Probe), 장력계, TDR(Time Domain Reflectrometry) 등이 이용되고 있으며, 광역 토양수분자료의 보다 정확한 공간 변동성의 관측을 위하여 항공원격탐사와 인공위성 원격탐사기술이 개발되어 적용되고 있다. 인공위성 영상은 자료의 분석이 간편하며, 공간자료이므로 공간 변화를 분석하는 데 있어 매우 편리하다. 그 중 MODIS(Moderate Resolution Imaging Spectroradiometer) 위성영상은 저해상도 영상으로 극궤도 위성인 Terra와 Aqua 위성에 장착되어 있으며, NASA에서 필요한 정보를 받아 사용할 수 있다. 본 연구에서는 유역의 물리적 지형자료와 같은 방대한 양의 자료 수집 없이도, 모형이 구축되면 인공위성자료와 강우자료만으로도 신뢰성 높은 결과를 단시간 내에 효율적으로 산정할 수 있는 자료 지향형 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하였다. 사용된 퍼지변수로는 시험유역의 토양수분 관측자료와 강수량 및 인공위성 자료인 MODIS NDVI(Normalize Difference Vegetation Index), MODIS LST(Land-Surface Temperature) 영상을 이용하였다. MODIS NDVI는 시간 해상도 8일, 공간해상도 250 인 Level 3 영상이며, MODIS LST는 시간 해상도 1일, 공간해상도 1 km인 Level 3 영상을 사용하였다. 위성자료를 사용하기 위해 Korea TM 좌표체계로 변환한 뒤, 토양수분 관측지점이 속한 각 셀의 속성값을 추출하였다. 위성자료와 수집된 자료 및 토양수분자료와의 관계를 분석하기 위하여 입력자료를 다양한 방법으로 구성하여 입력 변수를 생성하였다. 생성된 입력 변수와 ANFIS 모형을 연계하여 각각의 토양수분 산정모형을 구축하고 대상지점에 대한 토양수분을 산정 및 비교 분석하였다.

  • PDF

Landuse Mapping using KOMPSAT-2 Satellite Image in River Basin Flood Mitigation Planning (유역 홍수계획수립에서 KOMPSAT-2 영상을 이용한 토지이용도 제작)

  • Shin, Hyoung-Sub;Kim, Kyu-Ho;Jung, Sang-Hwa;Na, Sang-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.635-635
    • /
    • 2012
  • 최근 공공분야 및 민간분야에서 고해상도 위성영상의 활용이 높아짐에 따라 이를 이용하여 수자원 분야의 치수계획 및 안전도 평가, 유역 홍수대응기술 분야에서의 다양한 활용이 비약적으로 증대되고 있는 실정이다. 고해상도 위성영상의 활용은 국지적 규모의 토지이용 변화 및 대기 상태의 모니터링을 위한 효과적인 기술로 인식되어 왔다. 우리나라의 KOMPSAT-2 위성은 GSD(Ground Sample Distance) 1m급의 전정색 영상과 4m급의 다중분광 영상을 동시에 제공하는 고해상도 위성이다. 그러나 다중분광센서의 복잡성과 보안성에 의해 영상이 제한적으로 제공되고 있어 KOMPSAT-2 위성영상을 이용한 다양한 연구가 미흡한 실정이다. 한편, 토지이용도의 제작은 다중분광 영상을 제공하는 위성영상을 이용하여 제작된다. 다중분광 영상이 제공하는 분광정보 및 공간정보 등으로 토지이용분류를 수행하거나 멀티센서 자료의 통합을 통한 토지이용분류 기법을 개발하여 제작하였다. 그러나 대부분 GSD 10m급 이상의 중 저해상도 위성영상을 이용하여 제작이 이루어져 수평위치 정확도 및 세부정보의 제공이 낮으며, 정보의 최신성이 결여되어 있다. 특히, 유역 치수안전도 평가를 위한 토지이용도 작성은 매우 중요한 부분을 차지하고 있으므로 이에 대한 연구가 필요하다. 이에 본 연구에서는 섬강유역을 대상으로 KOMPSAT-2 영상을 이용하여 유역 치수안전도 평가 및 치수계획 수립기술을 위한 토지이용도를 작성하고자 한다. 토지이용 분류방법은 감독분류와 무감독분류 방법을 조합하여 분류정확도를 개선시키는 하이브리드분류(hybrid classification) 방법을 이용하였으며, 분류기준의 선정은 환경부 토지이용분류 기준을 참고하여 1단위와 2단위 분류체계를 혼용하였다. 또한, 분류 후 후처리를 통하여 잡음을 제거하고 환경부의 토지이용도를 참조하여 육안판독으로 오분류된 지역을 보정하였다. 새롭게 작성된 토지이용도는 기존의 토지이용도와 비교 분석하여 토지이용변화 상황을 파악하고, 이를 통하여 KOMPSAT-2 영상의 토지이용도 개선 가능성을 검토하였다.

  • PDF

A Study on Prediction System of Sea Fogs in the East Sea (동해의 해무 예측 시스템 연구)

  • 서장원;오희진;안중배;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.121-131
    • /
    • 2003
  • We have found that the east coast of Korea has had few sea fogs on January, February, November and December for the past 20 years by the analysis of monthly fog frequency and duration time. These phenomena appear to relate to the topographical characteristics of which the Taebaek Mountains descends toward the east to bar the radiation fog. On the other hand, the cause of occurring the spring and summer fog which has 90% of the whole frequency is divided into three cases. The first is the steam fog caused by the advection of the northeast cold air current on the East Sea due to the extension of Okhotsk High. The second is the advection fog caused by cooling and saturation of warm airmass advected on cold sea surface. And the last is the frontal fog caused by the supply of enough vapor due to the movement of low-pressure system and the advection of cold air behind a cold front. While, we simulate the sea fog for the period of the case studies by implementing fog prediction system(DUT-METRI) that makes it possible to forecast the fog in the vertical section of neighborhood of the East Sea and to predict the sea surface wind, relative humidity, ceiling height, visibility etc. Finally we verified this result by satellite image.

Accuracy analysis on the temperature measurement with thermistor (인공위성용 서미스터의 온도측정 정확도 분석)

  • Suk, Byong-Suk;Lee, Yun-Ki;Lee, Na-Young
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2008
  • The thermistors and AD590 are widely used for temperature measurement in space application. The resistance of thermistor will vary according to the temperature variation therefore the external voltage or current stimulus signal have to be provided to measure resistance variation. Recently high resolution electro optic camera system of satellite requires tight thermal control of the camera structure to minimize the thermal structural distortion which can affects the image quality. In order to achieve $1^{\circ}$(deg C) thermal control requirement, the accuracy of temperature measurement have to be higher than $0.3^{\circ}$(deg C). In this paper, the accuracy of temperature measurement using thermistors is estimated and analyzed.

  • PDF

Geometric Modelling and Coordinate Transformation of Satellite-Based Linear Pushbroom-Type CCD Camera Images (선형 CCD카메라 영상의 기하학적 모델 수립 및 좌표 변환)

  • 신동석;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.85-98
    • /
    • 1997
  • A geometric model of pushbroom-type linear CCD camera images is proposed in this paper. At present, this type of cameras are used for obtaining almost all kinds of high-resolution optical images from satellites. The proposed geometric model includes not only a forward transformation which is much more efficient. An inverse transformation function cannot be derived analytically in a closed form because the focal point of an image varies with time. In this paper, therefore, an iterative algorithm in which a focal point os converged to a given pixel position is proposed. Although the proposed model can be applied to any pushbroom-type linear CCD camera images, the geometric model of the high-resolution multi-spectral camera on-board KITSAT-3 is used in this paper as an example. The flight model of KITSAT-3 is in development currently and it is due to be launched late 1998.

Comparison of Digital Number Distribution Changes of Each Class according to Atmospheric Correction in LANDSAT-5 TM (LANDSAT-5 TM 영상의 대기보정에 따른 클래스별 화소값 분포 변화 비교)

  • Jung, Tae-Woong;Eo, Yang-Dam;Jin, Tailie;Lim, Sang-Boem;Park, Doo-Youl;Park, Hwang-Soo;Piao, Minghe;Park, Wan-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Due to increasing frequency of yellow dust, not to mention high rate of precipitation and cloud formation in summer season of Korea, atmospheric correction of satellite remote sensing is necessary. This research analyzes the effect of atmospheric correction has on imagery classification by comparing DN distribution before and after atmospheric correction. The image used in the research is LANDSAT-5 TM. As for atmospheric correction module, commercial product ATCOR, FLAASH as well as COST model released on the internet, were used. The result of experiment shows that class separability increased in building areas.

SPOT/VEGETATION-based Algorithm for the Discrimination of Cloud and Snow (SPOT/VEGETATION 영상을 이용한 눈과 구름의 분류 알고리즘)

  • Han Kyung-Soo;Kim Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2004
  • This study focuses on the assessment for proposed algorithm to discriminate cloudy pixels from snowy pixels through use of visible, near infrared, and short wave infrared channel data in VEGETATION-1 sensor embarked on SPOT-4 satellite. Traditional threshold algorithms for cloud and snow masks did not show very good accuracy. Instead of these independent masking procedures, K-Means clustering scheme is employed for cloud/snow discrimination in this study. The pixels used in clustering were selected through an integration of two threshold algorithms, which group ensemble the snow and cloud pixels. This may give a opportunity to simplify the clustering procedure and to improve the accuracy as compared with full image clustering. This paper also compared the results with threshold methods of snow cover and clouds, and assesses discrimination capability in VEGETATION channels. The quality of the cloud and snow mask even more improved when present algorithm is implemented. The discrimination errors were considerably reduced by 19.4% and 9.7% for cloud mask and snow mask as compared with traditional methods, respectively.

Height Estimation of the Flat-Rooftop Structures using Line-Based Stereo Matching (직선 기반 스테레오 정합을 이용한 평면 지붕 인공지물의 고도 정보 추출)

  • 최성한;엄기문;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.61-70
    • /
    • 1995
  • In this paper, the algorithm to extract the height of flat-rooftop structures in stereo aerial image is suggested with an assumption that location, orientation, focal length, and field of view of a camera are known. It can be adapted to stereo aerial or satellite images. For performing feature-based stereo matching, the line segments suitable to describe the shape of general buildings are chosen as the feature. This paper is composed of three categories;the first step is to extract edges of structures with the polygon extraction algorithm which utilizes the edge following method, the second step is to perform the line segment matching with the camera information, and the last step is to calculate the location of each matched line and to estimate heights. The stereo images used in experiments are not real but synthetic ones. The experiment shows good results.

Comparison between Neural Network and Conventional Statistical Analysis Methods for Estimation of Water Quality Using Remote Sensing (원격탐사를 이용한 수질평가시의 인공신경망에 의한 분석과 기존의 회귀분석과의 비교)

  • 임정호;정종철
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.107-117
    • /
    • 1999
  • A comparison of a neural network approach with the conventional statistical methods, multiple regression and band ratio analyses, for the estimation of water quality parameters in presented in this paper. The Landsat TM image of Lake Daechung acquired on March 18, 1996 and the thirty in-situ sampling data sets measured during the satellite overpass were used for the comparison. We employed a three-layered and feedforward network trained by backpropagation algorithm. A cross validation was applied because of the small number of training pairs available for this study. The neural network showed much more successful performance than the conventional statistical analyses, although the results of the conventional statistical analyses were significant. The superiority of a neural network to statistical methods in estimating water quality parameters is strictly because the neural network modeled non-linear behaviors of data sets much better.