• Title/Summary/Keyword: SATELLITE IMAGE

Search Result 2,133, Processing Time 0.024 seconds

COMPARISON OF SUB-SAMPLING ALGORITHM FOR LRIT IMAGE GENERATION

  • Bae, Hee-Jin;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.109-113
    • /
    • 2007
  • The COMS provides the LRIT/HRIT services to users. The COMS LRIT/HRIT broadcast service should satisfy the 15 minutes timeliness requirement. The requirement is important and critical enough to impact overall performance of the LHGS. HRIT image data is acquired from INRSM output receiving but LRIT image data is generated by sub-sampling HRIT image data in the LHGS. Specially, since LRIT is acquired from sub-sampled HRIT image data, LRIT processing spent more time. Besides, some of data loss for LRIT occurs since LRIT is compressed by lossy JPEG. Therefore, algorithm with the fastest processing speed and simplicity to be implemented should be selected to satisfy the requirement. Investigated sub-sampling algorithm for the LHGS were nearest neighbour algorithm, bilinear algorithm and bicubic algorithm. Nearest neighbour algorithm is selected for COMS LHGS considering the speed, simplicity and anti-aliasing corresponding to the guideline of user (KMA: Korea Meteorological Administration) to maintain the most cloud itself information in a view of meteorology. But the nearest neighbour algorithm is known as the worst performance. Therefore, it is studied in this paper that the selection of nearest neighbour algorithm for the LHGS is reasonable. First of all, characteristic of 3 sub-sampling algorithms is studied and compared. Then, several sub-sampling algorithm were applied to MTSAT-1R image data corresponding to COMS HRIT. Also, resized image was acquired from sub-sampled image with the identical sub-sampling algorithms applied to sub-sampling from HRIT to LRIT. And the difference between original image and resized image is compared. Besides, PSNR and MSE are calculated for each algorithm. This paper shows that it is appropriate to select nearest neighbour algorithm for COMS LHGS since sub-sampled image by nearest neighbour algorithm is little difference with that of other algorithms in quality performance from PSNR.

  • PDF

Pan-Sharpening Algorithm of High-Spatial Resolution Satellite Image by Using Spectral and Spatial Characteristics (영상의 분광 및 공간 특성을 이용한 고해상도 위성영상 융합 알고리즘)

  • Choi, Jae-Wan;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.79-86
    • /
    • 2010
  • Generally, image fusion is defined as generating re-organized image by merging two or more data using special algorithms. In remote sensing, image fusion technique is called as Pan-sharpening algorithm because it aims to improve the spatial resolution of original multispectral image by using panchromatic image of high-spatial resolution. The pan-sharpened image has been an important task due to various applications such as change detection, digital map creation and urban analysis. However, most approaches have tended to distort the spectral information of the original multispectral data or decrease the spatial quality compared with the panchromatic image. In order to solve these problems, a novel pan-sharpening algorithm is proposed by considering the spectral and spatial characteristics of multispectral image. The algorithm is applied to the KOMPSAT-2 and QuickBird satellite image and the results showed that our method can improve the spectral/spatial quality compared with the existing fusion algorithms.

Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Han, Tai-Hyun;Yoo, Hong-Rhyong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • KOSC(Korea Ocean Satellite Center), the primary operational organization for GOCI(Geostationary Ocean Color Imager), was established in KORDI(Korea Ocean Research & Development Institute). For a stable distribution service of GOCI data, various systems were installed at KOSC as follows: GOCI Data Acquisition System, Image Pre-processing System, GOCI Data Processing System, GOCI Data Distribution System, Data Management System, Total Management & Control System and External Data Exchange System. KOSC distributes the GOCI data 8 times to user at 1-hour intervals during the daytime in near-real time according to the distribution policy. Finally, we introduce the KOSC website for users to search, request and download GOCI data.

Unsupervised Change Detection of KOMPSAT-3 Satellite Imagery Based on Cross-sharpened Images by Guided Filter (Guided Filter를 이용한 교차융합영상 기반 KOMPSAT-3 위성영상의 무감독변화탐지)

  • Choi, Jaewan;Park, Honglyun;Kim, Donghak;Choi, Seokkeun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.777-786
    • /
    • 2018
  • GF (Guided Filtering) is a representative image processing technique to effectively remove noise while preserving edge information in the digital image. In this paper, we proposed a unsupervised change detection method for the KOMPSAT-3 satellite image using the GF and evaluated its performance. In order to utilize GF for the unsupervised change detection, cross-sharpened images were generated based on GF, and CVA (Change Vector Analysis) was applied to the generated cross-sharpened images to extract the changed area in the multitemporal satellite imagery. Experimental results using KOMPSAT-3 satellite images showed that the proposed method can be effectively used to detect changed regions compared with CVA results based on existing cross-sharpened images.

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF

Optical Design of Satellite Camera for Lens Shifting Image Stabilization (렌즈 시프팅 영상 안정화 기법 적용을 위한 위성카메라의 광학설계)

  • Tak, Jun-Mo;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-25
    • /
    • 2016
  • In this study, an optical system for a lens-shifting method that compensates for microvibration of a high-agility small satellite has been designed. The lens-shifting method is an image-stabilization technique that can be applied to compensate for the optical path disturbed by microvibration. The target optical system is designed by using Code-V, a commercial optical-design code. The specifications for real satellite cameras have established the requirements for optical design. The Ray aberration curve, spot diagram, and MTF curve were carried out to verify if the designed optical system meets the requirements or not. The designed Schmidt-Cassegrain optical system with field flattener and a vibration-reduction lens has been verified to meet the optical requirements, 33% of MTF at Nyquist frequency, GSD of 2.87 m, and vibration coefficient of 0.95~1.0.

Epipolar Resampling Module for CAS500 Satellites 3D Stereo Data Processing (국토위성 3차원 데이터 생성을 위한 입체 기하 영상 생성 모듈 제작 및 테스트)

  • Oh, Jaehong;Lee, Changno
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.939-948
    • /
    • 2020
  • CAS500-1 and CAS500-2 are high-resolution Earth-observing satellites being developed and scheduled to launch for land monitoring of Korea. The satellite information will be used for land usage analysis, change detection, 3D topological monitoring, and so on. Satellite image data of region of interests must be acquired in the stereo mode from different positions for 3D information generation. Accurate 3D processing and 3D display of stereo satellite data requires the epipolar image resampling process considering the pushbroom sensor and the satellite trajectory. This study developed an epipolar image resampling module for CAS-500 stereo data processing and verified its accuracy performance by testing along-track, across-track, and heterogeneous stereo data.

Automatic Image-to-Image Registration of Middle- and Low-resolution Satellite Images Using Scale-Invariant Feature Transform Technique (SIFT 기법을 이용한 중.저해상도 위성영상간의 자동 기하보정)

  • Han, Dong-Yeob;Kim, Dae-Sung;Lee, Jae-Bin;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.409-416
    • /
    • 2006
  • To use image data obtained from different sensors and different techniques, the preprocessing step that registers them in a common coordinate system is needed. For this purpose, we developed the methodology to register middle- and low-resolution satellite images automatically. Firstly, candidate matching points were extracted using the Harris and Harris-affine algorithm. Secondly, we used the correlation coefficient, normalized correlation coefficient and SIFT algorithm to detect conjugate matching points from candidates. Then, to test the feasibility of approaches, we applied the developed methodology to various kinds of satellite images and compared results. The results clearly demonstrate that the methology using the SIFT is appropriate to register these multi-resolution satellite images automatically, compared with the classical cross-correlation.

Attitude Scenarios of Star Observation for Image Validation of Remote Sensing Satellite (영상검정을 위한 지구관측위성의 별 관측 자세 시나리오 생성 기법)

  • Yu, Ji-Woong;Park, Sang-Young;Lee, Dong-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.807-817
    • /
    • 2012
  • An optical payload needs to be validated its image performance after launched into orbit. The image performance was validated by observing star because ground site contains uncertainties caused by atmosphere, time of the year, and weather. Time Delayed and Integration(TDI) technique, which is mostly used to observe the ground, is going to be used to observe the selected stars. A satellite attitude scenario was also developed to observe the selected stars. The scenario is created to enable TDI to operate. Rotation angles of optical payload are determined in order for the selected stars to properly be passed at a desired angular velocity about rotation axis. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit. In addition, a quaternion for pointing selected stars is calculated minimizing the path from a given arbitrary attitude of satellite.

A Study on the Preparation Method of Fruit Cropping Distribution Map using Satellite Images and GIS (위성영상과 GIS를 이용한 과수재배 분포도 작성 기법에 관한 연구)

  • Jo, Myung-Hee;Bu, Ki-Dong;Lee, Jung-Hyoup;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.73-86
    • /
    • 2000
  • This study focused on extracting an efficient method in the fruit cropping distribution mapping with various classification methods using multi-temporal satellite images and Geographic Information Systems(GIS). For this study, multi-temporal Landsat TM images, in observation data and existing fruit cropping area statistics were used to compare and analyze the properties of fruit cropping and seasonal distribution per classification method. As a result, this study concludes that Maximum Likelihood Method with earlier autumn satellite image was most efficient for the fruit cropping mapping using Landsat TM image. In addition, it was clarified that cropping area per administrative boundary was prepared and distribution pattern was identified efficiently using GIS spatial analysis.

  • PDF