• Title/Summary/Keyword: SATELLITE IMAGE

Search Result 2,133, Processing Time 0.031 seconds

Classification of satellite image using pyramid structure and texture features (계층 구조와 텍스쳐 특징을 이용한 위성 영상의 분류)

  • Um, Gi-Mun;Kim, Jeong-Ho;Kim, Jeong-Kee;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.449-452
    • /
    • 1992
  • Before performing an adaptive stereo matching using satellite images, classification is needed as a preprocessing step. This paper describes that classification of three land cover types : river, mountain, and agricultural fields. We proposed that classification algorithm using pyramid structure and texture features. Results of applying the proposed algorithm to satellite image improved classification accuracy.

  • PDF

A STUDY ON SPATIAL FEATURE EXTRACTION IN THE CLASSIFICATION OF HIGH RESOLUTIION SATELLITE IMAGERY

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.361-364
    • /
    • 2008
  • It is well known that combining spatial and spectral information can improve land use classification from satellite imagery. High spatial resolution classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, extracting the spatial information is one of the most important steps in high resolution satellite image classification. In this paper, we propose a new spatial feature extraction method. The extracted features are integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a Support Vector Machines classifier. In order to evaluate the proposed feature extraction method, we applied our approach to KOMPSAT-2 data and compared the result with the other methods.

  • PDF

Current Research and Development Status for CAS 500-1/2 Image Processing and Utilization Technology (국토관측위성영상 처리 및 활용기술 연구개발 현황)

  • Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.861-866
    • /
    • 2020
  • CAS(Compact Advanced Satellite) 500-1 satellite and its follow-up, CAS 500-2, are scheduled to be launched in 2021. For these satellites, a research project on 'CAS 500-1/2 Image Acquisition and Utilization Technology Development' has been carried out. This paper summarizes publications carried out under the project, papers presented within this special issue and contributions of the project.

Extraction of Spatial Characteristics of Cadastral Land Category from RapidEye Satellite Images

  • La, Phu Hien;Huh, Yong;Eo, Yang Dam;Lee, Soo Bong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.581-590
    • /
    • 2014
  • With rapid land development, land category should be updated on a regular basis. However, manual field surveys have certain limitations. In this study, attempts were made to extract a feature vector considering spectral signature by parcel, PIMP (Percent Imperviousness), texture, and VIs (Vegetation Indices) based on RapidEye satellite image and cadastral map. A total of nine land categories in which feature vectors were significantly extracted from the images were selected and classified using SVM (Support Vector Machine). According to accuracy assessment, by comparing the cadastral map and classification result, the overall accuracy was 0.74. In the paddy-field category, in particular, PO acc. (producer's accuracy) and US acc. (user's accuracy) were highest at 0.85 and 0.86, respectively.

The Effect Analysis and Correction of Phase errors by Satellite Attitude Errors using the FSA for the Spotlight SAR Processing (Spotlight SAR 신호처리기법 FSA를 이용한 위성 자세오차로 인한 위상오차 영향분석 및 보정)

  • Shim, Sang-Heun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.160-169
    • /
    • 2007
  • In this paper, we have described and simulated the effect analysis and correction of phase errors in the SAR rawdata induced by satellite attitude errors such as drift, jitter. This simulation is based on the FSA(Frequency Scaling Algorithm) for high resolution image formation of the Spotlight SAR. Phase errors produce the degradation of SAR image quality such as loss of resolution, geometric distortion, loss of contrast, spurious targets, and decrease in SNR. To resolve this problem, this paper presents method for correction of phase errors using the PGA(Phase Gradient Algorithm) in connection with the FSA. Several results of the phase errors correction are presented for Spotlight SAR rawdata.

Detection of buildings from 1m-resolution satellite imagery

  • Kim, Sung-Chai;Jeon, Seung-Hun;Kim, Min;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.95-100
    • /
    • 2002
  • Detecting simple shaped buildings from 1m-resolution satellite imagery is presented. The proposed algorithm is that first, image features such as edges are detected and then segmentation process is performed with the detected features. It can be result in line primitives. These primitives are linked and grouped by building hypotheses. Proposed building hypotheses restrict a building to simple rectangular shape. And sub-region homogeneity test is performed for finding rooftops of buildings. The proposed algorithm has been tested on IKONOS satellite image with 1m-resolution.

  • PDF

Development of Ground Control Point Collection and Management System based on High resolution Satellite Images

  • Kim, Kwang-Yong;Yoon, Chang-Rak;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.343-345
    • /
    • 2003
  • This paper describes the system development for the Ground Control Point collection and management through the major coastline region in KOREA, which will collect and manage the ground control point based on high resolution satellite image database. The module of this system is following 1) GCP/Coarstline research plan module 2) GCP/Coarstline ground collection module 3) GCP/Coarstline post processing module Our team developed the core components of ‘High Resolution Satellite Image Processing Technique’ project, and this system, among applications of our project, is constructed to apply to practical use. In this application, you will also see how to apply core components of our project.

  • PDF

Building Detection Using Shadow Information in KOMPSAT Satellite Imagery (그림자 정보를 이용한 KOMPSAT 위성영상에서의 건물 검출)

  • 예철수;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.235-242
    • /
    • 2000
  • This paper presents a method to detect buildings using shadow information in satellite imagery. We classify image into three categories of building region, shadow region and background region to find buildings with consistent intensity. After the removal of noises in building regions and shadow regions, buildings adjacent to shadow regions are detected using the constraint of building and shadow sizes. The algorithm has been applied to KOMPSAT and SPOT images and the result showed buildings are efficiently detected.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

Change Detection Comparison of Multitemporal Infrared Satellite Imagery Using Relative Radiometric Normalization (상대 방사 정규화를 이용한 다시기 적외 위성영상의 변화탐지 비교)

  • Han, Dongyeob;Song, Jeongheon;Byun, Younggi
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1179-1185
    • /
    • 2017
  • The KOMPSAT-3A satellite acquires high-resolution MWIR images twice a day compared to conventional Earth observing satellites. New radiometric information of Earth's surface can be provided due to different characteristics from existing SWIR images or TIR images. In this study, the difference image of multitemporal images was generated and compared with existing infrared images to find the characteristics of KOMPSAT-3A MWIR satellite images. A co-registration was performed and the difference between pixel values was minimized by using PIFs (Pseudo Invariant Features) pixel-based relative normalization. The experiment using Sentinel-2 SWIR image, Landsat 8 TIR image, and KOMPSAT-3A MWIR image showed that the distinction between artifacts in the difference image of KOMPSAT-3A is prominent. It is believed that the utilization of KOMPSAT-3A MWIR images can be improved by using the characteristics of IR image.