• Title/Summary/Keyword: SARS-CoV-2 variant

Search Result 23, Processing Time 0.028 seconds

Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant

  • Tae-Hun Kim;Sojung Bae;Sunggeun Goo;Jinjong Myoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1587-1594
    • /
    • 2023
  • Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.

Guillain-Barré syndrome associated with SARS-CoV-2 vaccination: how is it different? a systematic review and individual participant data meta-analysis

  • Yerasu Muralidhar Reddy;Jagarlapudi MK Murthy;Syed Osman;Shyam Kumar Jaiswal;Abhinay Kumar Gattu;Lalitha Pidaparthi;Santosh Kumar Boorgu;Roshan Chavan;Bharadwaj Ramakrishnan;Sreekanth Reddy Yeduguri
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.143-155
    • /
    • 2023
  • Purpose: An association between Guillain-Barré syndrome (GBS) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination has been reported. We aimed to summarize the clinical features of GBS associated with SARS-CoV-2 vaccination and determine the contrasting features from coronavirus disease-19 (COVID-19) associated GBS and GBS following other causes. Materials and Methods: We performed PubMed search for articles published between 1 December 2020 and 27 January 2022 using search terms related to "SARS-CoV-2 vaccination" and "GBS". Reference searching of the eligible studies was performed. Sociodemographic and vaccination data, clinical and laboratory features, and outcomes were extracted. We compared these findings with post-COVID-19 GBS and International GBS Outcome Study (IGOS) (GBS from other causes) cohorts. Results: We included 100 patients in the analysis. Mean age was 56.88 years, and 53% were males. Six-eight received non-replicating virus vector and 30 took messenger RNA (mRNA) vaccines. The median interval between the vaccination and the GBS onset was 11 days. Limb weakness, facial palsy, sensory symptoms, dysautonomia, and respiratory insufficiency were seen in 78.65%, 53.3%, 77.4%, 23.5%, and 25%, respectively. The commonest clinical and electrodiagnostic subtype were sensory-motor variant (68%) and acute inflammatory demyelinating polyneuropathy (61.4%), respectively. And 43.9% had poor outcome (GBS outcome score ≥3). Pain was common with virus vector than mRNA vaccine, and the latter had severe disease at presentation (Hughes grade ≥3). Sensory phenomenon and facial weakness were common in vaccination cohort than post-COVID-19 and IGOS. Conclusion: There are distinct differences between GBS associated with SARS-CoV-2 vaccination and GBS due to other causes. Facial weakness and sensory symptoms were commonly seen in the former and outcomes poor.

SARS-CoV-2 mRNA Vaccine Elicits Sustained T Cell Responses Against the Omicron Variant in Adolescents

  • Sujin Choi;Sang-Hoon Kim;Mi Seon Han;Yoonsun Yoon;Yun-Kyung Kim;Hye-Kyung Cho;Ki Wook Yun;Seung Ha Song;Bin Ahn;Ye Kyung Kim;Sung Hwan Choi;Young June Choe;Heeji Lim;Eun Bee Choi;Kwangwook Kim;Seokhwan Hyeon;Hye Jung Lim;Byung-chul Kim;Yoo-kyoung Lee;Eun Hwa Choi;Eui-Cheol Shin;Hyunju Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.33.1-33.13
    • /
    • 2023
  • Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.

Clinical Manifestations, Epidemiologic Characteristics, and Disease Burden of the Coronavirus Disease-19 in Children Ages 5-11 Years Old

  • Kang, Hyun Mi;Park, Ji Young;Choe, Young June
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) has been a global pandemic for over 2 years. During the Omicron (B.1.1.529) variant-predominant period in South Korea, confirmed cases among children and adolescents surged. This review found that, although younger children may be less susceptible to COVID-19 than adolescents, more research is needed on the role of children and adolescents in the disease's spread. Detailed epidemiological information about the transmissibility of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain in children and adolescents is currently scarce, and more research is needed on the role of children and adolescents in disease's spread. There may be a difference in the proportion of cases with severe disease requiring hospitalization depending on the dominant mutant strain; however, COVID-19 generally presents with a mild-to-moderate course in children aged 5-11 years old.

COVID-19 Surveillance using Wastewater-based Epidemiology in Ulsan (울산지역 하수기반역학을 이용한 코로나19 감시 연구)

  • Gyeongnam Kim;Jaesun Choi;Yeon-Su Lee;Dae-Kyo Kim;Junyoung Park;Young-Min Kim;Youngsun Choi
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.260-265
    • /
    • 2024
  • During the coronavirus 2019 (COVID-19) pandemic, wastewater-based epidemiology was used for surveying infectious diseases. In this study, wastewater surveillance was employed to monitor COVID-19 outbreaks. Wastewater influent samples were collected from four sewage treatment plants in Ulsan (Gulhwa, Yongyeon, Nongso, and Bangeojin) between August 2022 and August 2023. The samples were concentrated using the polyethylene glycol-sodium chloride pretreatment method. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was extracted and detected using real-time polymerase chain reaction. Next generation sequences was used to perform correlation analysis between SARS-CoV-2 concentrations and COVID-19 cases and for COVID-19 variant analysis. A strong correlation was observed between SARS-CoV-2 concentrations and COVID-19 cases (correlation coefficient, r = 0.914). The COVID-19 variant analysis results were similar to the clinical variant genomes of three epidemics during the study period. In conclusion, monitoring COVID-19 via analyzing wastewater facilitates early recognition and prediction of epidemics.

Regional TMPRSS2 V197M Allele Frequencies Are Correlated with COVID-19 Case Fatality Rates

  • Jeon, Sungwon;Blazyte, Asta;Yoon, Changhan;Ryu, Hyojung;Jeon, Yeonsu;Bhak, Youngjune;Bolser, Dan;Manica, Andrea;Shin, Eun-Seok;Cho, Yun Sung;Kim, Byung Chul;Ryoo, Namhee;Choi, Hansol;Bhak, Jong
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.680-687
    • /
    • 2021
  • Coronavirus disease, COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has a higher case fatality rate in European countries than in others, especially East Asian ones. One potential explanation for this regional difference is the diversity of the viral infection efficiency. Here, we analyzed the allele frequencies of a nonsynonymous variant rs12329760 (V197M) in the TMPRSS2 gene, a key enzyme essential for viral infection and found a significant association between the COVID-19 case fatality rate and the V197M allele frequencies, using over 200,000 present-day and ancient genomic samples. East Asian countries have higher V197M allele frequencies than other regions, including European countries which correlates to their lower case fatality rates. Structural and energy calculation analysis of the V197M amino acid change showed that it destabilizes the TMPRSS2 protein, possibly negatively affecting its ACE2 and viral spike protein processing.

The influence of Omicron on vaccine efficacy and durability: a neurology perspective

  • Jethendra Kumar Muruganantham;Ramakrishnan Veerabathiran
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.3
    • /
    • pp.175-183
    • /
    • 2024
  • Omicron variants present new challenges when it comes to understanding their impact on vaccines, antiviral strategies, and possible neurological consequences. This article describes the characteristics of the Omicron variant, its epidemiology, the efficacy of vaccines and monoclonal antibodies, and its association with lymphoid depletion. We also explore the neurological implications of Omicron, focusing on its association with encephalopathy and encephalitis. There are unique challenges associated with the Omicron variant, which is characterized by distinct mutations and increased transmissibility. For a better understanding of the effects of this disease and developing strategies to combat its spread, especially concerning neurological complications, ongoing research is necessary.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein

  • Jun Seop, Yun;Hyeeun, Song;Nam Hee, Kim;So Young, Cha;Kyu Ho, Hwang;Jae Eun, Lee;Cheol-Hee, Jeong;Sang Hyun, Song;Seonghun, Kim;Eunae Sandra, Cho;Hyun Sil, Kim;Jong In, Yook
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.911-922
    • /
    • 2022
  • A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.

A Study and Analysis of COVID-19 Diagnosis and Approach of Deep Learning

  • R, Mangai Begum
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.149-158
    • /
    • 2022
  • The pandemic of Covid-19 (Coronavirus Disease 19) has devastated the world, affected millions of people, and disrupted the world economy. The cause of the Covid19 epidemic has been identified as a new variant known as Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV2). It motives irritation of a small air sac referred to as the alveoli. The alveoli make up most of the tissue in the lungs and fill the sac with mucus. Most human beings with Covid19 usually do no longer improve pneumonia. However, chest x-rays of seriously unwell sufferers can be a useful device for medical doctors in diagnosing Covid19-both CT and X-ray exhibit usual patterns of frosted glass (GGO) and consolidation. The introduction of deep getting to know and brand new imaging helps radiologists and medical practitioners discover these unnatural patterns and pick out Covid19-infected chest x-rays. This venture makes use of a new deep studying structure proposed to diagnose Covid19 by the use of chest X-rays. The suggested model in this work aims to predict and forecast the patients at risk and identify the primary COVID-19 risk variables