DOI QR코드

DOI QR Code

Regional TMPRSS2 V197M Allele Frequencies Are Correlated with COVID-19 Case Fatality Rates

  • Jeon, Sungwon (Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Blazyte, Asta (Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Yoon, Changhan (Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Ryu, Hyojung (Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jeon, Yeonsu (Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Bhak, Youngjune (Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Bolser, Dan (Geromics, Ltd.) ;
  • Manica, Andrea (Department of Zoology, University of Cambridge) ;
  • Shin, Eun-Seok (Division of Cardiology, Department of Internal Medicine, Ulsan Medical Center) ;
  • Cho, Yun Sung (Clinomics, Inc.) ;
  • Kim, Byung Chul (Clinomics, Inc.) ;
  • Ryoo, Namhee (Department of Laboratory Medicine, Keimyung University School of Medicine) ;
  • Choi, Hansol (Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Bhak, Jong (Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2020.12.18
  • Accepted : 2021.07.10
  • Published : 2021.09.30

Abstract

Coronavirus disease, COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has a higher case fatality rate in European countries than in others, especially East Asian ones. One potential explanation for this regional difference is the diversity of the viral infection efficiency. Here, we analyzed the allele frequencies of a nonsynonymous variant rs12329760 (V197M) in the TMPRSS2 gene, a key enzyme essential for viral infection and found a significant association between the COVID-19 case fatality rate and the V197M allele frequencies, using over 200,000 present-day and ancient genomic samples. East Asian countries have higher V197M allele frequencies than other regions, including European countries which correlates to their lower case fatality rates. Structural and energy calculation analysis of the V197M amino acid change showed that it destabilizes the TMPRSS2 protein, possibly negatively affecting its ACE2 and viral spike protein processing.

Keywords

Acknowledgement

This research was a part of Korean Genome Project (KGP) and was approved by the Institutional Review Board (IRB) of the Ulsan National Institute of Science and Technology (UNISTIRB-15-19-A, UNISTIRB-16-13-C). This work was supported by the Promotion of Innovative Businesses for Regulation-Free Special Zones funded by the Ministry of SMEs and Startups (MSS, Korea)(P0016193)(2.210511.01). This work was also supported by the Establishment of Demonstration Infrastructure for Regulation-Free Special Zones funded by the Ministry of SMEs and Startups (MSS, Korea) (P0016191)(2.210514.01). This work was also supported by the Research Project Funded by Ulsan City Research Fund (2.201052.01) of UNIST (Ulsan National Institute of Science & Technology). We thank Dr. Seung Gu Park for advising the data visualization and Jasmin Junseo Lee for editing grammatical errors.

References

  1. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nat. Methods 7, 248-249. https://doi.org/10.1038/nmeth0410-248
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Asselta, R., Paraboschi, E.M., Mantovani, A., and Duga, S. (2020). ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany N.Y.) 12, 10087-10098. https://doi.org/10.18632/aging.103415
  4. Bhattacharyya, C., Das, C., Ghosh, A., Singh, A.K., Mukherjee, S., Majumder, P.P., Basu, A., and Biswas, N.K. (2020). Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. BioRxiv, https://doi.org/10.1101/2020.05.04.075911
  5. Blake, L.E. and Garcia-Blanco, M.A. (2014). Human genetic variation and yellow fever mortality during 19th century U.S. epidemics. mBio 5, e01253-14.
  6. Broad Institute (2020). Picard toolkit. Retrieved May 7, 2020, from http://broadinstitute.github.io/picard/
  7. Cai, G. (2020a). Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov. MedRxiv, https://doi.org/10.1101/2020.02.05.20020107
  8. Cai, H. (2020b). Sex difference and smoking predisposition in patients with COVID-19. Lancet Respir. Med. 8, e20. https://doi.org/10.1016/S2213-2600(20)30117-X
  9. Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G., and Wang, W. (2020). Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 6, 11. https://doi.org/10.1038/s41421-020-0147-1
  10. Capriotti, E., Fariselli, P., Rossi, I., and Casadio, R. (2008). A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics 9 Suppl 2, S6.
  11. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7. https://doi.org/10.1186/s13742-015-0047-8
  12. Cheng, J., Randall, A., and Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62, 1125-1132. https://doi.org/10.1002/prot.20810
  13. Cocca, M., Barbieri, C., Concas, M.P., Robino, A., Brumat, M., Gandin, I., Trudu, M., Sala, C.F., Vuckovic, D., Girotto, G., et al. (2020). A bird's-eye view of Italian genomic variation through whole-genome sequencing. Eur. J. Hum. Genet. 28, 435-444. https://doi.org/10.1038/s41431-019-0551-x
  14. Daneshkhah, A., Eshein, A., Subramanian, H., Roy, H.K., and Backman, V. (2020). The possible role of vitamin D in suppressing cytokine storm and associated mortality in COVID-19 patients. MedRxiv, https://doi.org/10.1101/2020.04.08.20058578
  15. Das, R. and Ghate, S.D. (2020). Investigating the likely association between genetic ancestry and COVID-19 manifestations. MedRxiv, https://doi.org/10.1101/2020.04.05.20054627
  16. Dehouck, Y., Kwasigroch, J.M., Gilis, D., and Rooman, M. (2011). PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 12, 151. https://doi.org/10.1186/1471-2105-12-151
  17. Dowd, J.B., Andriano, L., Brazel, D.M., Rotondi, V., Block, P., Ding, X., Liu, Y., and Mills, M.C. (2020). Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc. Natl. Acad. Sci. U. S. A. 117, 9696-9698. https://doi.org/10.1073/pnas.2004911117
  18. European Centre for Disease Prevention and Control (2020). COVID-19 statistics worldwide. Retrieved May 23, 2020, from https://www.ecdc.europa.eu/en/covid-19-pandemic
  19. Fu, Q., Posth, C., Hajdinjak, M., Petr, M., Mallick, S., Fernandes, D., Furtwangler, A., Haak, W., Meyer, M., Mittnik, A., et al. (2016). The genetic history of Ice Age Europe. Nature 534, 200-205. https://doi.org/10.1038/nature17993
  20. Han, S., Andres, A.M., Marques-Bonet, T., and Kuhlwilm, M. (2019). Genetic variation in Pan species is shaped by demographic history and harbors lineage-specific functions. Genome Biol. Evol. 11, 1178-1191. https://doi.org/10.1093/gbe/evz047
  21. Herter, S., Piper, D.E., Aaron, W., Gabriele, T., Cutler, G., Cao, P., Bhatt, A.S., Choe, Y., Craik, C.S., Walker, N., et al. (2005). Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem. J. 390, 125-136. https://doi.org/10.1042/BJ20041955
  22. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  23. Hussein, N.R. (2020). Possible factors associated with low case fatality rate of COVID-19 in Kurdistan Region, Iraq. J. Kermanshah Univ. Med. Sci. 24, e103393.
  24. Jeon, S., Bhak, Y., Choi, Y., Jeon, Y., Kim, S., Jang, J., Jang, J., Blazyte, A., Kim, C., Kim, Y., et al. (2020). Korean Genome Project: 1094 Korean personal genomes with clinical information. Sci. Adv. 6, eaaz7835. https://doi.org/10.1126/sciadv.aaz7835
  25. Ji, Y., Ma, Z., Peppelenbosch, M.P., and Pan, Q. (2020). Potential association between COVID-19 mortality and health-care resource availability. Lancet Glob. Health 8, e480. https://doi.org/10.1016/S2214-109X(20)30068-1
  26. Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443. https://doi.org/10.1038/s41586-020-2308-7
  27. Kenyon, C. (2020). Why has COVID-19 spread more extensively in Europe than Asia? Preprints, https://doi.org/10.20944/preprints202005.0200.v1
  28. Kim, D.E., Chivian, D., and Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32(Web Server issue), W526-W531. https://doi.org/10.1093/nar/gkh468
  29. Lai, C.C., Shih, T.P., Ko, W.C., Tang, H.J., and Hsueh, P.R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55, 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  30. Liu, X., Wu, C., Li, C., and Boerwinkle, E. (2016). dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum. Mutat. 37, 235-241. https://doi.org/10.1002/humu.22932
  31. Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., et al. (2020). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U. S. A. 117, 7001-7003. https://doi.org/10.1073/pnas.2002589117
  32. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Flicek, P., and Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome Biol. 17, 122. https://doi.org/10.1186/s13059-016-0974-4
  33. Miller, A., Reandelar, M.J., Fasciglione, K., Roumenova, V., Li, Y., and Otazu, G.H. (2020). Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19. MedRxiv, https://doi.org/10.1101/2020.03.24.20042937
  34. Mjaess, G., Karam, A., Aoun, F., Albisinni, S., and Roumeguere, T. (2020). COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor. Prog. Urol. 30, 484-487. https://doi.org/10.1016/j.purol.2020.05.007
  35. Monticelli, M., Hay Mele, B., Benetti, E., Fallerini, C., Baldassarri, M., Furini, S., Frullanti, E., Mari, F., Andreotti, G., Cubellis, M.V., et al. (2021). Protective role of a TMPRSS2 variant on severe COVID-19 outcome in young males and elderly women. Genes (Basel) 12, 596. https://doi.org/10.3390/genes12040596
  36. Ng, P.C. and Henikoff, S. (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812-3814. https://doi.org/10.1093/nar/gkg509
  37. Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., et al. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620. https://doi.org/10.1038/s41467-020-15562-9
  38. Pandurangan, A.P., Ochoa-Montano, B., Ascher, D.B., and Blundell, T.L. (2017). SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res. 45(W1), W229-W235. https://doi.org/10.1093/nar/gkx439
  39. Paniri, A., Hosseini, M.M., and Akhavan-Niaki, H. (2021). First comprehensive computational analysis of functional consequences of TMPRSS2 SNPs in susceptibility to SARS-CoV-2 among different populations. J. Biomol. Struct. Dyn. 39, 3576-3593. https://doi.org/10.1080/07391102.2020.1767690
  40. Parthiban, V., Gromiha, M.M., and Schomburg, D. (2006). CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res. 34(Web Server issue), W239-W242. https://doi.org/10.1093/nar/gkl190
  41. Petersen, L., Andersen, P.K., and Sorensen, T.I. (2010). Genetic influences on incidence and case-fatality of infectious disease. PLoS One 5, e10603. https://doi.org/10.1371/journal.pone.0010603
  42. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  43. Pires, D.E., Ascher, D.B., and Blundell, T.L. (2014a). DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 42(Web Server issue), W314-W319. https://doi.org/10.1093/nar/gku411
  44. Pires, D.E., Ascher, D.B., and Blundell, T.L. (2014b). mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30, 335-342. https://doi.org/10.1093/bioinformatics/btt691
  45. Prado-Martinez, J., Sudmant, P.H., Kidd, J.M., Li, H., Kelley, J.L., Lorente-Galdos, B., Veeramah, K.R., Woerner, A.E., O'Connor, T.D., Santpere, G., et al. (2013). Great ape genetic diversity and population history. Nature 499, 471-475. https://doi.org/10.1038/nature12228
  46. Redelman-Sidi, G. (2020). Could BCG be used to protect against COVID-19? Nat. Rev. Urol. 17, 316-317. https://doi.org/10.1038/s41585-020-0325-9
  47. Segovia-Juarez, J., Castagnetto, J.M., and Gonzales, G.F. (2020). High altitude reduces infection rate of COVID-19 but not case-fatality rate. Respir. Physiol. Neurobiol. 281, 103494. https://doi.org/10.1016/j.resp.2020.103494
  48. Sharma, S., Singh, I., Haider, S., Malik, M.Z., Ponnusamy, K., and Rai, E. (2020). ACE2 homo-dimerization, human genomic variants and interaction of host proteins explain high population specific differences in outcomes of COVID19. BioRxiv, https://doi.org/10.1101/2020.04.24.050534
  49. Shen, M.Y. and Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507-2524. https://doi.org/10.1110/ps.062416606
  50. Song, J., Li, Y., Huang, X., Chen, Z., Li, Y., Liu, C., Chen, Z., and Duan, X. (2020). Systematic analysis of ACE2 and TMPRSS2 expression in salivary glands reveals underlying transmission mechanism caused by SARS-CoV-2. J. Med. Virol. 92, 2556-2566. https://doi.org/10.1002/jmv.26045
  51. Sonn, J.W., Kang, M., and Choi, Y. (2020). Smart city technologies for pandemic control without lockdown. Int. J. Urban Sci. 24, 149-151. https://doi.org/10.1080/12265934.2020.1764207
  52. Souilmi, Y., Lauterbur, M.E., Tobler, R., Huber, C.D., Johar, A.S., and Enard, D. (2020). An ancient coronavirus-like epidemic drove adaptation in East Asians from 25,000 to 5,000 years ago. BioRxiv, https://doi.org/10.1101/2020.11.16.385401
  53. Urnikyte, A., Flores-Bello, A., Mondal, M., Molyte, A., Comas, D., Calafell, F., Bosch, E., and Kucinskas, V. (2019). Patterns of genetic structure and adaptive positive selection in the Lithuanian population from high-density SNP data. Sci. Rep. 9, 9163. https://doi.org/10.1038/s41598-019-45746-3
  54. Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze, B.J., Chen, V.B., et al. (2018). MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293-315. https://doi.org/10.1002/pro.3330
  55. Williams, F.M.K., Freidin, M.B., Mangino, M., Couvreur, S., Visconti, A., Bowyer, R.C.E., Le Roy, C.I., Falchi, M., Sudre, C., Davies, R., et al. (2020). Self-reported symptoms of covid-19 including symptoms most predictive of SARS-CoV-2 infection, are heritable. MedRxiv, https://doi.org/10.1101/2020.04.22.20072124
  56. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7-8.
  57. Yang, Y. and Zhou, Y. (2008). Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72, 793-803. https://doi.org/10.1002/prot.21968
  58. Yuan, F.F., Velickovic, Z., Ashton, L.J., Dyer, W.B., Geczy, A.F., Dunckley, H., Lynch, G.W., and Sullivan, J.S. (2014). Influence of HLA gene polymorphisms on susceptibility and outcome post infection with the SARS-CoV virus. Virol. Sin. 29, 128-130. https://doi.org/10.1007/s12250-014-3398-x
  59. Zhang, C., Gao, Y., Ning, Z., Lu, Y., Zhang, X., Liu, J., Xie, B., Xue, Z., Wang, X., Yuan, K., et al. (2019). PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome Biol. 20, 215. https://doi.org/10.1186/s13059-019-1838-5
  60. Zhou, L., Xu, Z., Castiglione, G.M., Soiberman, U.S., Eberhart, C.G., and Duh, E.J. (2020). ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul. Surf. 18, 537-544. https://doi.org/10.1016/j.jtos.2020.06.007