• 제목/요약/키워드: SARS-CoV-2 E

검색결과 77건 처리시간 0.024초

SARS-CoV-2 Antibody Neutralization Assay Platforms Based on Epitopes Sources: Live Virus, Pseudovirus, and Recombinant S Glycoprotein RBD

  • Endah Puji Septisetyani;Pekik Wiji Prasetyaningrum;Khairul Anam;Adi Santoso
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.39.1-39.18
    • /
    • 2021
  • The high virulent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that emerged in China at the end of 2019 has generated novel coronavirus disease, coronavirus disease 2019 (COVID-19), causing a pandemic worldwide. Every country has made great efforts to struggle against SARS-CoV-2 infection, including massive vaccination, immunological patients' surveillance, and the utilization of convalescence plasma for COVID-19 therapy. These efforts are associated with the attempts to increase the titers of SARS-CoV-2 neutralizing Abs (nAbs) generated either after infection or vaccination that represent the body's immune status. As there is no standard therapy for COVID-19 yet, virus eradication will mainly depend on these nAbs contents in the body. Therefore, serological nAbs neutralization assays become a requirement for researchers and clinicians to measure nAbs titers. Different platforms have been developed to evaluate nAbs titers utilizing various epitopes sources, including neutralization assays based on the live virus, pseudovirus, and neutralization assays utilizing recombinant SARS-CoV-2 S glycoprotein receptor binding site, receptor-binding domain. As a standard neutralization assay, the plaque reduction neutralization test (PRNT) requires isolation and propagation of live pathogenic SARS-CoV-2 virus conducted in a BSL-3 containment. Hence, other surrogate neutralization assays relevant to the PRNT play important alternatives that offer better safety besides facilitating high throughput analyses. This review discusses the current neutralization assay platforms used to evaluate nAbs, their techniques, advantages, and limitations.

A bioinformatics approach to characterize a hypothetical protein Q6S8D9_SARS of SARS-CoV

  • Md Foyzur Rahman;Rubait Hasan;Mohammad Shahangir Biswas;Jamiatul Husna Shathi;Md Faruk Hossain;Aoulia Yeasmin;Mohammad Zakerin Abedin;Md Tofazzal Hossain
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.3.1-3.10
    • /
    • 2023
  • Characterization as well as prediction of the secondary and tertiary structure of hypothetical proteins from their amino acid sequences uploaded in databases by in silico approach are the critical issues in computational biology. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), which is responsible for pneumonia alike diseases, possesses a wide range of proteins of which many are still uncharacterized. The current study was conducted to reveal the physicochemical characteristics and structures of an uncharacterized protein Q6S8D9_SARS of SARS-CoV. Following the common flowchart of characterizing a hypothetical protein, several sophisticated computerized tools e.g., ExPASy Protparam, CD Search, SOPMA, PSIPRED, HHpred, etc. were employed to discover the functions and structures of Q6S8D9_SARS. After delineating the secondary and tertiary structures of the protein, some quality evaluating tools e.g., PROCHECK, ProSA-web etc. were performed to assess the structures and later the active site was identified also by CASTp v.3.0. The protein contains more negatively charged residues than positively charged residues and a high aliphatic index value which make the protein more stable. The 2D and 3D structures modeled by several bioinformatics tools ensured that the proteins had domain in it which indicated it was functional protein having the ability to trouble host antiviral inflammatory cytokine and interferon production pathways. Moreover, active site was found in the protein where ligand could bind. The study was aimed to unveil the features and structures of an uncharacterized protein of SARS-CoV which can be a therapeutic target for development of vaccines against the virus. Further research are needed to accomplish the task.

명치 통증으로 내원한 COVID-19에 감염된 8세 소아의 단독 급성 췌장염 1례 (A Case of Isolated Acute Pancreatitis Presenting With Epigastric Pain in an 8-Year-Old Child Infected With COVID-19)

  • 진주옥;정세리;곽병옥;황숙민;조기영
    • Pediatric Infection and Vaccine
    • /
    • 제30권2호
    • /
    • pp.104-110
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)는 호흡기계 뿐만 아니라 소화기계에도 감염을 일으킨다. 이중 SARS-CoV-2가 급성 췌장염을 일으키는 경우는 성인과 소아를 포함하여coronavirus disease 2019 (COVID-19) 확진 환자의 약 0.16% 정도이다. COVID-19에 확진된 소아 환자에서의 급성 췌장염은 그 동안 소아다기관염증증후군이나 중증의 코로나 감염 환자에서 동반 질환으로 보고되는 게 대부분이며 단독으로 급성 췌장염만 일으키는 사례는 거의 없었다. 저자들은 SARS-CoV-2에 감염된 소아 환자에게서 단독으로 급성 췌장염이 발생한 예를 경험하였고 성공적으로 치료하였기에 보고하는 바이다.

Druggability for COVID-19: in silico discovery of potential drug compounds against nucleocapsid (N) protein of SARS-CoV-2

  • Ray, Manisha;Sarkar, Saurav;Rath, Surya Narayan
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.43.1-43.13
    • /
    • 2020
  • The coronavirus disease 2019 is a contagious disease and had caused havoc throughout the world by creating widespread mortality and morbidity. The unavailability of vaccines and proper antiviral drugs encourages the researchers to identify potential antiviral drugs to be used against the virus. The presence of RNA binding domain in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be a potential drug target, which serves multiple critical functions during the viral life cycle, especially the viral replication. Since vaccine development might take some time, the identification of a drug compound targeting viral replication might offer a solution for treatment. The study analyzed the phylogenetic relationship of N protein sequence divergence with other 49 coronavirus species and also identified the conserved regions according to protein families through conserved domain search. Good structural binding affinities of a few natural and/or synthetic phytocompounds or drugs against N protein were determined using the molecular docking approaches. The analyzed compounds presented the higher numbers of hydrogen bonds of selected chemicals supporting the drug-ability of these compounds. Among them, the established antiviral drug glycyrrhizic acid and the phytochemical theaflavin can be considered as possible drug compounds against target N protein of SARS-CoV-2 as they showed lower binding affinities. The findings of this study might lead to the development of a drug for the SARS-CoV-2 mediated disease and offer solution to treatment of SARS-CoV-2 infection.

Spike protein D614G and RdRp P323L: the SARS-CoV-2 mutations associated with severity of COVID-19

  • Biswas, Subrata K.;Mudi, Sonchita R.
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.44.1-44.7
    • /
    • 2020
  • The severity of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), greatly varies from patient to patient. In the present study, we explored and compared mutation profiles of SARS-CoV-2 isolated from mildly affected and severely affected COVID-19 patients in order to explore any relationship between mutation profile and disease severity. Genomic sequences of SARS-CoV-2 were downloaded from Global Initiative on Sharing Avian Influenza Data (GISAID) database. With the help of Genome Detective Coronavirus Typing Tool, genomic sequences were aligned with the Wuhan seafood market pneumonia virus reference sequence and all the mutations were identified. Distribution of mutant variants was then compared between mildly and severely affected groups. Among the numerous mutations detected, 14408C>T and 23403A>G mutations resulting in RNA-dependent RNA polymerase (RdRp) P323L and spike protein D614G mutations, respectively, were found predominantly in severely affected group (>82%) compared with mildly affected group (<46%, p < 0.001). The 241C>T mutation in the non-coding region of the genome was also found predominantly in severely affected group (p < 0.001). The 3037C>T, a silent mutation, also appeared in relatively high frequency in severely affected group compared with mildly affected group, but the difference was not statistically significant (p = 0.06). We concluded that spike protein D614G and RdRp P323L mutations in SARS-CoV-2 are associated with severity of COVID-19. Further studies will be required to explore whether these mutations have any impact on the severity of disease.

Cynomolgus Macaque Model for COVID-19 Delta Variant

  • Seung Ho Baek;Hanseul Oh;Bon-Sang Koo;Green Kim;Eun-Ha Hwang;Hoyin Jung;You Jung An;Jae-Hak Park;Jung Joo Hong
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.48.1-48.13
    • /
    • 2022
  • With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, which are randomly mutated, the dominant strains in regions are changing globally. The development of preclinical animal models is imperative to validate vaccines and therapeutics against SARS-CoV-2 variants. The objective of this study was to develop a non-human primate (NHP) model for SARS-CoV-2 Delta variant infection. Cynomolgus macaques infected with Delta variants showed infectious viruses and viral RNA in the upper (nasal and throat) and lower respiratory (lung) tracts during the acute phase of infection. After 3 days of infection, lesions consistent with diffuse alveolar damage were observed in the lungs. For cellular immune responses, all macaques displayed transient lymphopenia and neutrophilia in the early stages of infection. SARS-CoV-2 Delta variant spike protein-specific IgM, IgG, and IgA levels were significantly increased in the plasma of these animals 14 days after infection. This new NHP Delta variant infection model can be used for comparative analysis of the difference in severity between SARS-CoV-2 variants of concern and may be useful in the efficacy evaluation of vaccines and universal therapeutic drugs for mutations.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

SARS-CoV-2 Omicron Mutation Is Faster than the Chase: Multiple Mutations on Spike/ACE2 Interaction Residues

  • Sinae Kim;Tam T. Nguyen;Afeisha S. Taitt;Hyunjhung Jhun;Ho-Young Park;Sung-Han Kim;Yong-Gil Kim;Eun Young Song;Youngmin Lee;Hokee Yum;Kyeong-Cheol Shin;Yang Kyu Choi;Chang-Seon Song;Su Cheong Yeom;Byoungguk Kim;Mihai Netea;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.38.1-38.8
    • /
    • 2021
  • Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (B.1.1.529) Omicron variant originated from South Africa in the middle of November 2021. SARS-CoV-2 is also called coronavirus disease 2019 (COVID-19) since SARS-CoV-2 is the causative agent of COVID-19. Several studies already suggested that the SARS-CoV-2 Omicron variant would be the fastest transmissible variant compared to the previous 10 SARS-CoV-2 variants of concern, interest, and alert. Few clinical studies reported the high transmissibility of the Omicron variant but there is insufficient time to perform actual experiments to prove it, since the spread is so fast. We analyzed the SARS-CoV-2 Omicron variant, which revealed a very high rate of mutation at amino acid residues that interact with angiostatin-converting enzyme 2. The mutation rate of COVID-19 is faster than what we prepared vaccine program, antibody therapy, lockdown, and quarantine against COVID-19 so far. Thus, it is necessary to find better strategies to overcome the current crisis of COVID-19 pandemic.

Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target

  • Jaewoo Hong;Hyunjhung Jhun;Yeo-Ok Choi;Afeisha S. Taitt;Suyoung Bae;Youngmin Lee;Chang-seon Song;Su Cheong Yeom;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • 제21권1호
    • /
    • pp.8.1-8.17
    • /
    • 2021
  • The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARSCoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.

Severe SARS-CoV-2 Infection With Multiorgan Involvement Followed by MIS-C in an Adolescent

  • Bomi Lim;Su-Mi Shin;Mi Seon Han
    • Pediatric Infection and Vaccine
    • /
    • 제29권3호
    • /
    • pp.155-160
    • /
    • 2022
  • 코로나19로 확진된 소아와 청소년은 대개 경한 증상을 나타내며 SARS-CoV-2 감염으로 인한 다기관 기능부전은 매우 드물다. 저자들은 코로나19 예방접종을 완료한 16세 청소년에게서 발생한 다기관을 침범한 심한 SARS-CoV-2 감염에 대해 보고하고자 한다. 환자는 내원 당시 의식이 없었으며 심한 마비성장폐색증이 있었다. 혈액검사 상 심한 대사성 산증과 함께 림프구감소증, 혈소판감소증, 염증 수치 상승, 간수치 상승, 단백뇨와 혈뇨가 동반된 급성 신손상의 증거가 있었다. 환자의 상태는 렘데시비르와 덱사메타손 투여와 함께 점차 호전되었다. 코로나19 확진 2주 후에 환자는 다기관염증증후군을 짧게 경험하였으나 특별한 합병증 없이 퇴원하였다.