DOI QR코드

DOI QR Code

SARS-CoV-2 Omicron Mutation Is Faster than the Chase: Multiple Mutations on Spike/ACE2 Interaction Residues

  • Sinae Kim (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Tam T. Nguyen (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Afeisha S. Taitt (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Hyunjhung Jhun (Technical Assistance Center, Korea Food Research Institute) ;
  • Ho-Young Park (Research Group of Functional Food Materials, Korea Food Research Institute) ;
  • Sung-Han Kim (Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yong-Gil Kim (Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Eun Young Song (Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University, Collage of Medicine) ;
  • Youngmin Lee (Department of Medicine, Pusan Paik Hospital, Inje University College of Medicine) ;
  • Hokee Yum (Pulmonary Science and Critical Care Medicine, Seoul Paik Hospital, Inje University College of Medicine) ;
  • Kyeong-Cheol Shin (Center for Respiratory Disease, College of Medicine, Yeungnam University) ;
  • Yang Kyu Choi (College of Veterinary Medicine, Konkuk University) ;
  • Chang-Seon Song (College of Veterinary Medicine, Konkuk University) ;
  • Su Cheong Yeom (Graduate School of International Agricultural Technology, Seoul National University) ;
  • Byoungguk Kim (Division of Vaccine Clinical Research Center for Vaccine Research, National Institute of Infectious Diseases) ;
  • Mihai Netea (Department of Internal Medicine and Center for Infectious Diseases, Radboud University) ;
  • Soohyun Kim (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University)
  • Received : 2021.12.14
  • Accepted : 2021.12.19
  • Published : 2021.12.31

Abstract

Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (B.1.1.529) Omicron variant originated from South Africa in the middle of November 2021. SARS-CoV-2 is also called coronavirus disease 2019 (COVID-19) since SARS-CoV-2 is the causative agent of COVID-19. Several studies already suggested that the SARS-CoV-2 Omicron variant would be the fastest transmissible variant compared to the previous 10 SARS-CoV-2 variants of concern, interest, and alert. Few clinical studies reported the high transmissibility of the Omicron variant but there is insufficient time to perform actual experiments to prove it, since the spread is so fast. We analyzed the SARS-CoV-2 Omicron variant, which revealed a very high rate of mutation at amino acid residues that interact with angiostatin-converting enzyme 2. The mutation rate of COVID-19 is faster than what we prepared vaccine program, antibody therapy, lockdown, and quarantine against COVID-19 so far. Thus, it is necessary to find better strategies to overcome the current crisis of COVID-19 pandemic.

Keywords

Acknowledgement

This paper was written as part of Konkuk University's research support program for its faculty on sabbatical leave in 2022. This work was supported by the National Research Foundation of Korea (NRF-2021R1F1A1057397). This research was supported by the Main Research Program (E0210503-01) of the Korea Food Research Institute (KFRI) funded by the Ministry of Science and ICT.

References

  1. Brown CM, Vostok J, Johnson H, Burns M, Gharpure R, Sami S, Sabo RT, Hall N, Foreman A, Schubert PL, et al. Outbreak of SARS-CoV-2 infections, including COVID-19 vaccine breakthrough infections, associated with large public gatherings - Barnstable County, Massachusetts, July 2021. MMWR Morb Mortal Wkly Rep 2021;70:1059-1062. https://doi.org/10.15585/mmwr.mm7031e2
  2. Dagpunar J. Interim estimates of increased transmissibility, growth rate, and reproduction number of the COVID-19 B.1.617.2 variant of concern in the United Kingdom. MedRxiv 2021. doi: 10.1101/2021.06.03.21258293.
  3. Liu Y, Rocklov J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med 2021;28:taab124.
  4. Shi Q, Dong XP. Rapid global spread of the SARS-CoV-2 delta (B.1.617.2) variant: spatiotemporal variation and public health impact. Zoonoses 2021;1:1-6.  https://doi.org/10.3390/zoonoses1010001
  5. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med 2021;385:585-594. https://doi.org/10.1056/NEJMoa2108891
  6. Sheikh A, McMenamin J, Taylor B, Robertson CPublic Health Scotland and the EAVE II Collaborators. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet 2021;397:2461-2462. https://doi.org/10.1016/S0140-6736(21)01358-1
  7. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450-454. https://doi.org/10.1038/nature02145
  8. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020;525:135-140. https://doi.org/10.1016/j.bbrc.2020.02.071
  9. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, et al. Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215-220. https://doi.org/10.1038/s41586-020-2180-5
  10. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020;581:221-224. https://doi.org/10.1038/s41586-020-2179-y
  11. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018;14:e1007236.
  12. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-1263. https://doi.org/10.1126/science.abb2507
  13. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by fulllength human ACE2. Science 2020;367:1444-1448. https://doi.org/10.1126/science.abb2762
  14. Yuan M, Wu NC, Zhu X, Lee CD, So RT, Lv H, Mok CK, Wilson IA. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020;368:630-633. https://doi.org/10.1126/science.abb7269
  15. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, et al. Cryo-EM structures of MERSCoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 2017;8:15092.
  16. Kim S, Lee JH, Lee S, Shim S, Nguyen TT, Hwang J, Kim H, Choi YO, Hong J, Bae S, et al. The progression of SARS coronavirus 2 (SARS-CoV2): mutation in the receptor binding domain of spike gene. Immune Netw 2020;20:e41.
  17. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005;309:1864-1868. https://doi.org/10.1126/science.1116480
  18. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020;181:894-904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  19. Jhun H, Park HY, Hisham Y, Song CS, Kim S. SARS-CoV-2 Delta (B.1.617.2) variant: a unique T478K mutation in receptor binding motif (RBM) of spike gene. Immune Netw 2021;21:e32.
  20. Torjesen I. Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ 2021;375:n2943.
  21. Zhang L, Li Q, Liang Z, Li T, Liu S, Cui Q, Nie J, Wu Q, Qu X, Huang W, et al. The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg Microbes Infect 2021;10:1-11. https://doi.org/10.1080/22221751.2020.1868951
  22. Barrett CT, Neal HE, Edmonds K, Moncman CL, Thompson R, Branttie JM, Boggs KB, Wu CY, Leung DW, Dutch RE. Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion. J Biol Chem 2021;297:100902.
  23. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009;106:5871-5876. https://doi.org/10.1073/pnas.0809524106
  24. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A 2005;102:11876-11881. https://doi.org/10.1073/pnas.0505577102
  25. Simmons G, Zmora P, Gierer S, Heurich A, Pohlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res 2013;100:605-614. https://doi.org/10.1016/j.antiviral.2013.09.028