• 제목/요약/키워드: SARS-CoV-19

검색결과 253건 처리시간 0.025초

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

Sustained SARS-CoV-2 antibody response in domestic pets: Insights from a longitudinal study

  • Yeonsu Oh;Dongseob Tark;Choi-Kyu Park;Ho-Seong Cho
    • 한국동물위생학회지
    • /
    • 제46권4호
    • /
    • pp.335-338
    • /
    • 2023
  • The COVID-19 pandemic, triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has not only impacted human health on a global scale but also raised concerns about the vulnerability of a wide array of animals that are in close contact with humans. Particularly, the potential for infection and the subsequent immune response in domestic pets such as dogs and cats remain largely unexplored under natural living conditions. In this study, we have undertaken the task of detecting and tracking the presence of antibodies against SARS-CoV-2 in a small cohort of household pets-specifically, two dogs and two cats. Employing techniques such as the indirect ELISA and plaque reduction neutralization tests, we observed that the neutralizing antibodies against SARS-CoV-2 in these animals were maintained for a duration of up to six months following their initial positive test result. This duration mirrors the antibody response documented in human cases of COVID-19, suggesting a comparable post-infection immune response timeline between humans and these domestic animals.

차세대 감염병 백신 (Next-generation Vaccines for Infectious Viral Diseases)

  • 윤선우
    • 생명과학회지
    • /
    • 제33권9호
    • /
    • pp.746-753
    • /
    • 2023
  • 바이러스성 전염병은 전 세계 공중 보건에 가장 큰 위협 중 하나로 간주된다. 최근 중증급성호흡기증후군 코로나바이러스-2(SARS-CoV-2)로 인한 COVID-19 대유행은 신종 바이러스 감염의 위협을 극명하게 상기시켜 주었다. 효율적인 백신과 치료제 개발 및 생산은 팬데믹을 퇴치할 수 있는 유일한 대안일 것이며 COVID-19 대유행은 새로운 바이러스성 질병을 통제하고 예방하기 위한 새로운 백신 플랫폼의 필요성을 보여주었다. 기존의 백신 플랫폼인 약독화 생백신, 불활성화 백신은 백신 개발 속도, 제조 등이 광범위한 백신 적용을 위한 긴급 사용에 한계가 있다. 흥미롭게도, COVID-19 예방을 위한 SARS-CoV-2 mRNA-지질나노입자(LNP) 플랫폼은 기존 백신 플랫폼 한계에 대한 효과적인 대안임이 확인되었다. 또한 COVID-19 mRNA 핵산 백신과 나노입자 기반 플랫폼은 SARS-CoV-2 및 변종 SARS-CoV-2 모두에 효과적인 백신임이 확인되었다. 이 논문에서는 mRNA 백신, 디지털 백신 및 나노입자백신 등의 차세대 백신 플랫폼을 중점으로 백신 기술 및 플랫폼의 장단점에 대해 기술하였다.

Development of a Single Nucleotide Polymorphism DNA Microarray for the Detection and Genotyping of the SARS Coronavirus

  • Guo, Xi;Geng, Peng;Wang, Quan;Cao, Boyang;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1445-1454
    • /
    • 2014
  • Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

Pre-existing Immunity to Endemic Human Coronaviruses Does Not Affect the Immune Response to SARS-CoV-2 Spike in a Murine Vaccination Model

  • Ahn Young Jeong;Pureum Lee;Moo-Seung Lee;Doo-Jin Kim
    • IMMUNE NETWORK
    • /
    • 제23권2호
    • /
    • pp.19.1-19.10
    • /
    • 2023
  • Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.

Progress and Challenges in the Development of COVID-19 Vaccines and Current Understanding of SARS-CoV-2-Specific Immune Responses

  • Kim, Kyun-Do;Hwang, Insu;Ku, Keun Bon;Lee, Sumin;Kim, Seong-Jun;Kim, Chonsaeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1109-1115
    • /
    • 2020
  • The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. Furthermore, the immune response against SARS-CoV-2 infection needs to be understood for the development of an efficient and safe vaccine. Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.

The pros and cons of entry restrictions: are entry restrictions really effective in preventing the spread of SARS-CoV-2?

  • Park, Donghwi;Boudier-Reveret, Mathieu;Chang, Min Cheol
    • Journal of Yeungnam Medical Science
    • /
    • 제39권4호
    • /
    • pp.344-346
    • /
    • 2022
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide, leading the World Health Organization to declare coronavirus disease 2019 (COVID-19) a pandemic. To curb the unchecked spread of SARS-CoV-2 infection, most countries have enforced travel restrictions. However, it is debatable whether such restrictions are effective in containing infections and preventing pandemics. Rather, they may negatively impact economies and diplomatic relationships. Each government should conduct an extensive and appropriate analysis of its national economy, diplomatic status, and COVID-19 preparedness to decide whether it is best to restrict entering travelers. Even if travelers from other countries are allowed entry, extensive contact tracing is required to prevent the spread of COVID-19. In addition, governments can implement "travel bubbles," which allow the quarantine-free flow of people among countries with relatively low levels of community transmission. An accurate evaluation of the benefits and losses due to entry restrictions during the COVID-19 pandemic would be helpful in determining whether entry restrictions are an effective measure to reduce the spread of infection in future pandemics.

Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome

  • Seo Won Shin;Ik Hyun Cho
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.23-32
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.

중합효소 연쇄반응 기반의 코로나-19 바이러스 검출법에 대한 국가별 목표 유전자 및 프로토콜 비교 연구 (Comparative Study of Target Genes and Protocols by Country for Detection of SARS-CoV-2 based on Polymerase Chain Reaction (PCR))

  • 김진희
    • 한국콘텐츠학회논문지
    • /
    • 제21권1호
    • /
    • pp.465-474
    • /
    • 2021
  • '심각한 급성 호흡기 증후군 코로나 바이러스 2(SARS-CoV-2)'에 의한 질병인 코로나-19는 2020년 3월 세계 보건기구에서 세계적인 전염병 대유행으로 선언되었고, 대부분의 나라에서 선별 및 확진을 위한 진단검사법으로 실시간 중합효소 연쇄반응 검사를 시행한다. 그러나 국가별 목표유전자 및 프로토콜이 다를 뿐만 아니라 진단결과의 판독절차도 다양해서 국가별로 확진자의 기준 역시 다르다. 이에 본 종설에서는 세계보건기구에서 고시한 국가별 목표유전자 및 검사기법, 진단기준을 비교하였고, 검사의 특이도와 민감도, 최소검출 한계, 양성 및 음성 대조군, 교차반응 후보군, 검체 대조군 설정 등의 특이사항도 함께 살펴보았다. 또한 각국의 검사기법과 한국의 검사기법의 특징을 고찰하였다. 마지막으로 향후 전세계가 '심각한 급성 호흡기 증후군 코로나 바이러스 2'에 대한 동일한 진단결과를 얻기 위하여 코로나-19 진단에 대한 표준화된 진단방법 및 결과판독 등을 제언하였다.

Abiraterone Acetate Attenuates SARS-CoV-2 Replication by Interfering with the Structural Nucleocapsid Protein

  • Kim, Jinsoo;Hwang, Seok Young;Kim, Dongbum;Kim, Minyoung;Baek, Kyeongbin;Kang, Mijeong;An, Seungchan;Gong, Junpyo;Park, Sangkyu;Kandeel, Mahmoud;Lee, Younghee;Noh, Minsoo;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.427-434
    • /
    • 2022
  • The drug repurposing strategy has been applied to the development of emergency COVID-19 therapeutic medicines. Current drug repurposing approaches have been directed against RNA polymerases and viral proteases. Recently, we found that the inhibition of the interaction between the SARS-CoV-2 structural nucleocapsid (N) and spike (S) proteins decreased viral replication. In this study, drug repurposing candidates were screened by in silico molecular docking simulation with the SARS-CoV-2 structural N protein. In the ChEMBL database, 1994 FDA-approved drugs were selected for the in silico virtual screening against the N terminal domain (NTD) of the SARS-CoV-2 N protein. The tyrosine 109 residue in the NTD of the N protein was used as the center of the ligand binding grid for the docking simulation. In plaque forming assays performed with SARS-CoV-2 infected Vero E6 cells, atovaquone, abiraterone acetate, and digoxin exhibited a tendency to reduce the size of the viral plagues without affecting the plaque numbers. Abiraterone acetate significantly decreased the accumulation of viral particles in the cell culture supernatants in a concentration-dependent manner. In addition, abiraterone acetate significantly decreased the production of N protein and S protein in the SARS-CoV-2-infected Vero E6 cells. In conclusion, abiraterone acetate has therapeutic potential to inhibit the viral replication of SARS-CoV-2.