Browse > Article
http://dx.doi.org/10.4014/jmb.2006.06006

Progress and Challenges in the Development of COVID-19 Vaccines and Current Understanding of SARS-CoV-2-Specific Immune Responses  

Kim, Kyun-Do (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Hwang, Insu (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Ku, Keun Bon (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Lee, Sumin (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Kim, Seong-Jun (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Kim, Chonsaeng (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.8, 2020 , pp. 1109-1115 More about this Journal
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally, and the WHO has declared this outbreak a pandemic. Vaccines are an effective way to prevent the rapid spread of COVID-19. Furthermore, the immune response against SARS-CoV-2 infection needs to be understood for the development of an efficient and safe vaccine. Here, we review the current understanding of vaccine targets and the status of vaccine development for COVID-19. We also describe host immune responses to highly pathogenic human coronaviruses in terms of innate and adaptive immunities.
Keywords
COVID-19; SARS-CoV-2; Coronavirus; vaccine; immune response;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. 2014. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine 32: 3169-3174.   DOI
2 Payne DC, Iblan I, Rha B, Alqasrawi S, Haddadin A, Al Nsour M, et al. 2016. Persistence of antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg. Infect. Dis. 22: 1824-1826.   DOI
3 Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L, et al. 2006. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J. Infect. Dis. 193: 792-795.   DOI
4 Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS. 2019. Recent advances in the vaccine development against Middle East respiratory syndrome-coronavirus. Front. Microbiol. 10: 1781.   DOI
5 Lin JT, Zhang JS, Su N, Xu JG, Wang N, Chen JT, et al. 2007. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther. 12: 1107-1113.
6 Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. 2019. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 4: e123158.   DOI
7 Tang F, Quan Y, Xin ZT, Wrammert J, Ma MJ, Lv H, et al. 2011. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186: 7264-7268.   DOI
8 Zhang B, Zhou X, Zhu C, Feng F, Qiu Y, Feng J, et al. 2020. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. Front. Mol. Biosci. 7: 157.   DOI
9 Haveri A, Smura T, Kuivanen S, Osterlund P, Hepojoki J, Ikonen N, et al. 2020. Serological and molecular findings during SARSCoV- 2 infection: the first case study in Finland, January to February 2020. Euro Surveill. 25: 2000266.
10 Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, et al. 2008. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine 26: 6338-6343.   DOI
11 Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K, et al. 2019. Safety and immunogenicity of an anti- Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect. Dis. 19: 1013-1022.   DOI
12 Ahmed SF, Quadeer AA, McKay MR. 2020. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12: 254.   DOI
13 Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, et al. 2020. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother. 16: 1232- 1238.   DOI
14 Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395: 565-574.   DOI
15 Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260-1263.   DOI
16 Teijaro JR. 2016. Type I interferons in viral control and immune regulation. Curr. Opin. Virol. 16: 31-40.   DOI
17 Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367: 1444-1448.   DOI
18 Zhou Y, Jiang S, Du L. 2018. Prospects for a MERS-CoV spike vaccine. Expert Rev. Vaccines 17: 677-686.   DOI
19 Koyama S, Ishii KJ, Coban C, Akira S. 2008. Innate immune response to viral infection. Cytokine 43: 336-341.   DOI
20 Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. 2011. Pattern recognition receptors and the innate immune response to viral infection. Viruses 3: 920-940.   DOI
21 Jensen S, Thomsen AR. 2012. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol. 86: 2900-2910.   DOI
22 He L, Ding Y, Zhang Q, Che X, He Y, Shen H, et al. 2006. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoVinfected $ACE2^+$ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 210: 288-297.   DOI
23 Perlman S, Dandekar AA. 2005. Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 5: 917-   DOI
24 Zumla A, Hui DS, Perlman S. 2015. Middle East respiratory syndrome. Lancet 386: 995-1007.   DOI
25 Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, et al. 2006. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 80: 5927- 5940.   DOI
26 Blanchard E, Roingeard P. 2015. Virus-induced double-membrane vesicles. Cell. Microbiol. 17: 45-50.   DOI
27 Lee JY, Kim SJ, Myoung J. 2019. Middle East respiratory syndrome Coronavirus-Encoded ORF8b inhibits RIG-I-Like receptors in a differential mechanism. J. Microbiol. Biotechnol. 29: 2014-2021.   DOI
28 Haller O, Kochs G. 2002. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3: 710-717.   DOI
29 Sen GC. 2001. Viruses and interferons. Annu. Rev. Microbiol. 55: 255-281.   DOI
30 Kurche JS, Haluszczak C, McWilliams JA, Sanchez PJ, Kedl RM. 2012. Type I IFN-dependent T cell activation is mediated by IFNdependent dendritic cell OX40 ligand expression and is independent of T cell IFNR expression. J. Immunol. 188: 585-593.   DOI
31 Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811.   DOI
32 Lokugamage KG, Schindewolf C, Menachery VD. 2020. SARS-CoV-2 sensitive to type I interferon pretreatment. bioRxiv 2020.2003.2007.982264.
33 Team CC-R. 2020. Severe outcomes among patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12- March 16, 2020. MMWR Morb Mortal Wkly Rep. 69: 343-346.   DOI
34 Shaw AC, Goldstein DR, Montgomery RR. 2013. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13: 875-887.   DOI
35 Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. 2016. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 19: 181-193.   DOI
36 Li T, Qiu Z, Zhang L, Han Y, He W, Liu Z, et al. 2004. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J. Infect. Dis. 189: 648-651.   DOI
37 Xie J, Fan HW, Li TS, Qiu ZF, Han Y. 2006. [Dynamic changes of T lymphocyte subsets in the long-term follow-up of severe acute respiratory syndrome patients]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 28: 253-255.
38 Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T, et al. 2020. Clinical progression of patients with COVID-19 in Shanghai, China. J. Infect. 80: e1-e6.
39 Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. 2020. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 71: 762-768.   DOI
40 Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. 2020. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol. 17: 541-543.   DOI
41 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506.   DOI
42 Snell LM, Osokine I, Yamada DH, De la Fuente JR, Elsaesser HJ, Brooks DG. 2016. Overcoming CD4 Th1 cell fate restrictions to sustain antiviral CD8 T cells and control persistent virus infection. Cell. Rep. 16: 3286-3296.   DOI
43 Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al. 2004. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136: 95-103.   DOI
44 Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. 2018. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 104: 8-13.   DOI
45 McElroy AK, Akondy RS, Davis CW, Ellebedy AH, Mehta AK, Kraft CS, et al. 2015. Human Ebola virus infection results in substantial immune activation. Proc. Natl. Acad. Sci. USA 112: 4719-4724.   DOI
46 Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. 2015. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 28: 465-522.   DOI
47 Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273.   DOI
48 Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. 2016. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15: 327-347.   DOI
49 Cheng VC, Lau SK, Woo PC, Yuen KY. 2007. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20: 660-694.   DOI
50 Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. 2012. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76: 16-32.   DOI
51 Newton AH, Cardani A, Braciale TJ. 2016. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin. Immunopathol. 38: 471-482.   DOI
52 Ababneh M, Alrwashdeh M, Khalifeh M. 2019. Recombinant adenoviral vaccine encoding the spike 1 subunit of the Middle East Respiratory Syndrome Coronavirus elicits strong humoral and cellular immune responses in mice. Vet. World 12: 1554-1562.   DOI
53 Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. 2020. Coronavirus infections and immune responses. J. Med. Virol. 92: 424-432.   DOI
54 Zhou G, Zhao Q. 2020. Perspectives on therapeutic neutralizing antibodies against the novel Coronavirus SARS-CoV-2. Int. J. Biol. Sci. 16: 1718-1723.   DOI
55 Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome Coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-${\kappa}B$. J. Microbiol. Biotechnol. 29: 1316-1323.   DOI
56 Gralinski LE, Baric RS. 2015. Molecular pathology of emerging coronavirus infections. J. Pathol. 235: 185-195.   DOI
57 Velavan TP, Meyer CG. 2020. The COVID-19 epidemic. Trop. Med. Int. Health 25: 278-280.   DOI
58 Li G, Chen X, Xu A. 2003. Profile of specific antibodies to the SARS-associated coronavirus. N. Engl. J. Med. 349: 508-509.   DOI
59 Cheng M, Chan CW, Cheung RC, Bikkavilli RK, Zhao Q, Au SW, et al. 2005. Cross-reactivity of antibody against SARS-coronavirus nucleocapsid protein with IL-11. Biochem. Biophys. Res. Commun. 338: 1654-1660.   DOI
60 Mubarak A, Alturaiki W, Hemida MG. 2019. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J. Immunol. Res. 2019: 6491738.   DOI
61 Thevarajan I, Nguyen THO, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. 2020. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat. Med. 26: 453-455.   DOI
62 Lake MA. 2020. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med (Lond). 20: 124-127.   DOI
63 Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. 2020. Clinical characteristics of Coronavirus disease 2019 in China. N. Engl. J. Med. 382: 1708-1720.   DOI
64 Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. 2020. Early transmission dynamics in Wuhan, China, of novel Coronavirus- Infected pneumonia. N. Engl. J. Med. 382: 1199-1207.   DOI
65 Prompetchara E, Ketloy C, Palaga T. 2020. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 38: 1-9.
66 Cucinotta D, Vanelli M. 2020. WHO declares COVID-19 a pandemic. Acta Biomed. 91: 157-160.
67 Lu S. 2020. Timely development of vaccines against SARS-CoV-2. Emerg. Microbes Infect. 9: 542-544.   DOI
68 Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of middle east respiratory syndrome coronavirus. J. Microbiol. Biotechnol. 29: 999-1007.   DOI
69 Jiang S, He Y, Liu S. 2005. SARS vaccine development. Emerg. Infect. Dis. 11: 1016-1020.   DOI