• Title/Summary/Keyword: SARS-CoV-19

Search Result 258, Processing Time 0.024 seconds

Diagnostic Techniques for SARS-CoV-2 Detection (SARS-CoV-2의 진단기술)

  • Kim, Jong-Sik;Kang, Na-Kyung;Park, Seon-Mi;Lee, Eun-Joo;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.731-741
    • /
    • 2020
  • Coronavirus disease 19 (COVID-19) is caused by SARS-CoV-2 (Severe Acute Respiratory SyndromeCoronavirus 2). To date, seven coronaviruses that can infect humans were reported. Among them, infections with four coronavirus strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) resulted in mild symptoms such as common cold, whereas SARS-CoV and MERS-CoV caused severe symptoms and epidemics in 2002 and 2012, respectively. In the most recent, SARS-CoV-2 was first reported in Wuhan, China in December 2019 and became a notorious cause of the ongoing global pandemics. To diagnose, treat, and prevent COVID-19, the development of rapid and accurate diagnostic tools, specific therapeutic drugs, and safe vaccines essentially are required. In order to develop these powerful tools, it is prerequisite to understand a phenotype, a genotype, and life cycle of SARS-CoV-2. Diagnostic techniques have been developing rapidly around world and many countries take the fast track system to accelerate approval. Approved diagnostic devices are rapidly growing facing to urgent demand to identify carriers. Currently developed commercial diagnostic devices are divided into mainly two categories: molecular assay and serological & immunological assay. Molecular assays begins the reverse transcription step following polymerase chain reaction or isothermal amplification. Immunological assay targets SARS-CoV-2 antigen or anti-SARS-CoV-2 antibody of samples. In this review, we summarize the phenotype, genome structure and gene expression of SARS-CoV-2 and provide the knowledge on various diagnostic techniques for SARS-CoV-2.

Phenotypes and Functions of SARS-CoV-2-Reactive T Cells

  • Jung, Min Kyung;Shin, Eui-Cheol
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.401-407
    • /
    • 2021
  • Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.

Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19)

  • Park, Su Eun
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.4
    • /
    • pp.119-124
    • /
    • 2020
  • A cluster of severe pneumonia of unknown etiology in Wuhan City, Hubei province in China emerged in December 2019. A novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was isolated from lower respiratory tract sample as the causative agent. The current outbreak of infections with SARS-CoV-2 is termed Coronavirus Disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 rapidly spread into at least 114 countries and killed more than 4,000 people by March 11 2020. WHO officially declared COVID-19 a pandemic on March 11, 2020. There have been 2 novel coronavirus outbreaks in the past 2 decades. The outbreak of severe acute respiratory syndrome (SARS) in 2002-2003 caused by SARS-CoV had a case fatality rate of around 10% (8,098 confirmed cases and 774 deaths), while Middle East respiratory syndrome (MERS) caused by MERS-CoV killed 861 people out of a total 2,502 confirmed cases between 2012 and 2019. The purpose of this review is to summarize known-to-date information about SARS-CoV-2, transmission of SARS-CoV-2, and clinical features.

Changes in SARS-CoV-2 antibody titers 6 months after the booster dose of BNT162b2 COVID-19 vaccine among health care workers

  • Takeshi Mochizuki;Takaki Hori;Koichiro Yano;Katsunori Ikari;Ken Okazaki
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.116-120
    • /
    • 2023
  • Purpose: In Japan, the data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers after the booster dose of the coronavirus disease 2019 (COVID-19) vaccine are insufficient. The aim of this study is to evaluate changes in SARS-CoV-2 antibody titers before, 1, 3, and 6 months after the booster dose of the BNT162b2 COVID-19 vaccine among health care workers. Materials and Methods: A total of 268 participants who received the booster dose of the BNT162b2 vaccine were analyzed. SARS-CoV-2 antibody titers were measured before (baseline) and at 1, 3, and 6 months after the booster dose. Factors associated with changes in SARS-CoV-2 antibody titers at 1, 3, and 6 months were analyzed. Cutoff values at baseline were calculated to prevent infection of the omicron variant of COVID-19. Results: The SARS-CoV-2 antibody titers at baseline, and 1, 3, and 6 months were 1,018.3 AU/mL, 21,396.5 AU/mL, 13,704.6 AU/mL, and 8,155.6 AU/mL, respectively. Factors associated with changes in SARS-CoV-2 antibody titers at 1 month were age and SARS-CoV-2 antibody titers at baseline, whereas changes in SARS-CoV-2 antibody titers at 3 and 6 months were associated with the SARS-CoV-2 antibody titers at 1 month. The cutoff values of the SARS-CoV-2 antibody titers at baseline were 515.4 AU/mL and 13,602.7 AU/mL at baseline and 1 month after the booster dose, respectively. Conclusion: This study showed that SARS-CoV-2 antibody titers increase rapidly at 1 month after the booster dose of the BNT162b2 vaccine and begin to decrease from 1 to 6 months. Hence, another booster may be needed as soon as possible to prevent infection.

Blood test results from simultaneous infection of other respiratory viruses in COVID-19 patients

  • In Soo, Rheem;Jung Min, Park;Seung Keun, Ham;Jae Kyung, Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.316-321
    • /
    • 2022
  • Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly, infecting millions of people worldwide. On March 11, 2020, the World Health Organization declared coronavirus disease (COVID-19) a pandemic owing to the worldwide spread of SARS-CoV-2, which created an unprecedented burden on the global healthcare system. In this context, there are increasing concerns regarding co-infections with other respiratory viruses, such as the influenza virus. In this study, clinical data of patients infected with SARS-CoV-2 and other respiratory viruses were compared with patients infected with SARS-CoV-2 alone. The hematology and blood biochemistry results of 178 patients infected with SARS-CoV-2 , who were tested on admission, were retrospectively reviewed. In patients with SARS-CoV-2 and adenovirus co-infection, C-reactive protein levels were elevated on admission, whereas lactate dehydrogenase (LDH), prothrombin time, international normalized ratio, activated partial thromboplastin clotting time, and bilirubin values were all within the normal range. Moreover, patients with SARS-CoV-2 and human bocavirus co-infection had low LDH and high bilirubin levels on admission. These findings reveal the clinical features of respiratory virus and SARS-CoV-2 co-infections and support the development of appropriate approaches for treating patients with SARS-CoV-2 and other respiratory virus co-infections.

SARS-CoV-2-Specific T Cell Responses in Patients with COVID-19 and Unexposed Individuals

  • Min-Seok Rha;A Reum Kim;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.2.1-2.11
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), an ongoing pandemic disease. In the current review, we describe SARS-CoV-2-specific CD4+ and CD8+ T-cell responses in acute and convalescent COVID-19 patients. We also discuss the relationships between COVID-19 severity and SARS-CoV-2-specific T-cell responses and summarize recent reports regarding SARS-CoV-2-reactive T cells in SARS-CoV-2-unexposed individuals. These T cells may be cross-reactive cells primed by previous infection with human common-cold coronaviruses. Finally, we outline SARS-CoV-2-specific T-cell responses in the context of vaccination. A better understanding of SARS-CoV-2-specific T-cell responses is needed to develop effective vaccines and therapeutics.

Epidemiology, Virology, and Clinical Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; Coronavirus Disease-19) (코로나바이러스감염증-19의 바이러스 (SARS-CoV-2) 특징, 전파 및 임상 양상)

  • Park, Su Eun
    • Pediatric Infection and Vaccine
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • A cluster of severe pneumonia of unknown etiology in Wuhan City, Hubei province in China emerged in December 2019. A novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was isolated from lower respiratory tract sample as the causative agent. The current outbreak of infections with SARS-CoV-2 is termed coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 rapidly spread into at least 114 countries and killed more than 4,000 people by March 11, 2020. WHO officially declared COVID-19 a pandemic on March 11, 2020. There have been 2 novel coronavirus outbreaks in the past 2 decades. The outbreak of severe acute respiratory syndrome (SARS) in 2002-2003 caused by SARS-CoV had a case fatality rate of around 10% (8,098 confirmed cases and 774 deaths), while Middle East respiratory syndrome (MERS) caused by MERS-CoV killed 858 people out of a total 2,499 confirmed cases between 2012 and 2019. The purpose of this review is to summarize known-to-date information about SARS-CoV-2, transmission of SARS-CoV-2, and clinical features of COVID-19.

Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis

  • Lee, Eunjin;Oh, Ji Eun
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.392-400
    • /
    • 2021
  • It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge.

Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2

  • Lee, Su Jin;Kim, Yu-Jin;Ahn, Dae-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1073-1085
    • /
    • 2022
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARS-CoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.

Clinical implications of coronavirus disease 2019 in neonates

  • Kim, Do-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.4
    • /
    • pp.157-164
    • /
    • 2021
  • Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, a small number of coronavirus disease 2019 (COVID-19) cases in neonates have been reported worldwide. Neonates currently account for only a minor proportion of the pediatric population affected by COVID-19. Thus, data on the epidemiological and clinical features of COVID-19 in neonates are limited. Approximately 3% of neonates born to mothers with COVID-19 reportedly tested positive for SARS-CoV-2. Current limited data on neonates with COVID-19 suggest that neonatal COVID-19 shows a relatively benign course despite a high requirement for mechanical ventilation. However, neonates with pre-existing medical conditions and preterm infants appear to be at a higher risk of developing severe COVID-19. The greatest perinatal concern of the COVID-19 pandemic is the possibility of vertical transmission, especially transplacental transmission of SARS-CoV-2. Although direct evidence of the vertical transmission of SARS-CoV-2 is lacking, its possibility during late pregnancy cannot be ruled out. This review summarizes available case studies on COVID-19 in neonates and introduces what is currently known about neonatal COVID-19 with focus on its vertical transmission.