Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.8.731

Diagnostic Techniques for SARS-CoV-2 Detection  

Kim, Jong-Sik (Department of Biological Sciences and Biotechnology, Andong National University)
Kang, Na-Kyung (Department of Clinical Laboratory Science, Dong-eui University)
Park, Seon-Mi (Department of Clinical Laboratory Science, Dong-eui University)
Lee, Eun-Joo (Department of Biological Sciences and Biotechnology, Andong National University)
Chung, Kyung Tae (Department of Clinical Laboratory Science, Dong-eui University)
Publication Information
Journal of Life Science / v.30, no.8, 2020 , pp. 731-741 More about this Journal
Abstract
Coronavirus disease 19 (COVID-19) is caused by SARS-CoV-2 (Severe Acute Respiratory SyndromeCoronavirus 2). To date, seven coronaviruses that can infect humans were reported. Among them, infections with four coronavirus strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) resulted in mild symptoms such as common cold, whereas SARS-CoV and MERS-CoV caused severe symptoms and epidemics in 2002 and 2012, respectively. In the most recent, SARS-CoV-2 was first reported in Wuhan, China in December 2019 and became a notorious cause of the ongoing global pandemics. To diagnose, treat, and prevent COVID-19, the development of rapid and accurate diagnostic tools, specific therapeutic drugs, and safe vaccines essentially are required. In order to develop these powerful tools, it is prerequisite to understand a phenotype, a genotype, and life cycle of SARS-CoV-2. Diagnostic techniques have been developing rapidly around world and many countries take the fast track system to accelerate approval. Approved diagnostic devices are rapidly growing facing to urgent demand to identify carriers. Currently developed commercial diagnostic devices are divided into mainly two categories: molecular assay and serological & immunological assay. Molecular assays begins the reverse transcription step following polymerase chain reaction or isothermal amplification. Immunological assay targets SARS-CoV-2 antigen or anti-SARS-CoV-2 antibody of samples. In this review, we summarize the phenotype, genome structure and gene expression of SARS-CoV-2 and provide the knowledge on various diagnostic techniques for SARS-CoV-2.
Keywords
COVID-19; diagnostic techniques; genome structure; SARS-CoV-2;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahn, D. G., Shin, H. J. and Kim, M. H. 2020. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol. 30, 313-324.   DOI
2 Amanat, F. and Krammer, F. 2020. SARS-CoV-2 vaccines: status report. Immunity 52, 583-589.   DOI
3 APHL. Public Health Considerations: Serologic Testing for COVID-19. 2020. https://www.aphl.org/programs/preparedness/crisis-management/documents/serologic-Testing-for-COVID-19.pdf
4 Arbely, E., Khattari, Z., Brotons, G., Akkawi, M., Salditt, T. and Arkin, I. T. 2004. A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J. Mol. Biol. 341, 769-779.   DOI
5 Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. and Fouchier, R. A. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814-1820.   DOI
6 Zhao, J., Yuan, Q., Wang, H., Liu, W., Liao, X. and Su, Y. 2020. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. ciaa344.
7 Ziebuhr, J., Snijder, E. J. and Gorbalenya, A. E. 2000. Virusencoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81, 853-879.   DOI
8 Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., Zhao, K., Chen, Q. J., Deng, F., Liu, L. L., Yan, B., Zhan, F. X., Wang, Y. Y., Xiao, G. F. and Shi, Z. L. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.   DOI
9 Woo, P. C., Lau, S. K., Lam, C. S., Lau, C. C., Tsang, A. K., Lau, J. H., Bai, R., Teng, J. L., Tsang, C. C., Wang, M., Zheng, B. J., Chan, K. H. and Yuen, K. Y. 2012. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995-4008.   DOI
10 Brian, D. A. and Baric, R. S. 2005. Coronavirus genome structure and replication. Coronavirus Replication and Reverse Genetics 287, 1-30.   DOI
11 Broughton, J. P. and Deng, X. 2020. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870-874.   DOI
12 Bustin, S. A. and Nolan, T. 2020. RT-qPCR testing of SARS-CoV-2: a primer. Int. J. Mol. Sci. 21, 3004.   DOI
13 Carter, L. J., Garner, L. V., Smoot, J. W., Li, Y., Zhou, Q., Saveson, C. J., Sasso, J. M., Gregg, A. C., Soares, D. J., Beskid, T. R., Jervey, S. R. and Liu, C. 2020. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 6, 591-605.   DOI
14 CDC. 2019-Novel Coronavirus (2019-nCoV) Real-Time RTPCR Diagnostic Panel. 2020. https://www.cdc.gov/coronavirus/2019-ncov/lab/virus-requests.html
15 CDC. Antibody Testing Interim Guidelines. 2020. https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html
16 Chang, C. K., Hou, M. H., Chang, C. F., Hsiao, C. D. and Huang, T. H. 2014. The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Res. 103, 39-50.   DOI
17 Ashour, H. M., Elkhatib, W. F., Rahman, M. M. and Elshabrawy, H. A. 2020. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9, 186.   DOI
18 Corman, V. M., Landt, O. and Kaiser, M. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RTPCR. Euro Surveill. 25, 2000045.
19 Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. 2020. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536-544.   DOI
20 Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F. and Tan, W. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727-733.   DOI
21 Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L. and Fouchier, R. A., et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967-1976.   DOI
22 Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J. and Jiang, S. 2009. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226-236.   DOI
23 FDA. Policy for diagnostic tests for coronavirus disease-2019 during the public health emergency. 2020. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/policy-coronavirus-disease-2019-tests-during-publichealth-emergency-revised.
24 FDA. List of COVID-19 in-vitro diagnostic devices approved by FDA. 2020. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas#individual-antigen
25 Fehr, A. R. and Perlman, S. 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1-23.   DOI
26 Golfetto, L., Alves, E. V., Martins, T. R., Sincero, T. C. M., Castro, J. B. S., Dannebroc, C. K., Oliveira, J. G., Levi, J. E., Onofre, A. S. C. and Bazzo, M. L. 2018. PCR-RFLP assay as an option for primary HPV test. Braz. J. Med. Biol. Res. 51, e7098.   DOI
27 Hou, H., Wang, T., Zhang, B., Luo, Y. and Mao, L. 2020. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin. Transl. Immunol. 9, e01136.
28 Cui, J., Li, F. and Shi, Z. L. 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192.   DOI
29 Huang, H. S. Tsai, C. L. Chang, J. Hsu, T. C. Lin, S. and Lee, C. C. 2017. Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta- analysis. Clin. Microbiol. Infect. 24, 1055-1063.
30 Hussain, S., Pan, J., Chen, Y., Yang, Y., Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P. and Guo, D. 2005. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol. 79, 5288-5295.   DOI
31 Jacofsky, D., Jacofsky, E. M. and Jacofsky, M. 2020. Understanding antibody testing for COVID-19. J. Arthroplasty 35, S74-S81.   DOI
32 Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W. and Duan, G. 2020. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 12, 372.   DOI
33 Kilic, T., Weissleder, R. and Lee, H. 2020. Molecular and immunological diagnostic tests of COVID-19: current status and challenges. iScience 23, 101406.   DOI
34 Kim, D., Lee, J. Y., Yang, J. S., Kim, J. W., Kim, V. N. and Chang, H. 2020. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914-921.   DOI
35 Korea Ministry of Food and Drug Safety. Public Report for Emergency-use-authorization. 2020. https://www.mfds.go.kr/brd/m_99/view.do?seq=44010&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1
36 Korea Ministry of Food and Drug Safety. List of COVID-19 in-vitro diagnostic devices approved by MFDS ('20.8.6). 2020. https://www.mfds.go.kr/eng/brd/m_65/view.do?seq=20&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1
37 Huang, W. E., Lim, B., Hsu, C. C., Xiong, D., Wu, W., Yu, Y., Jia, H., Wang, Y., Zeng, Y., Ji, M., Chang, H., Zhang, X., Wang, H. and Cui, Z. 2020. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb. Biotechnol. 13, 950-961.   DOI
38 Lai, M. M. 1990. Coronavirus: organization, replication and expression of genome. Annu. Rev. Microbiol. 44, 303-333.   DOI
39 Li, H., Zhou, Y., Zhang, M., Wang, H., Zhao, Q., Liu, J. and Li, H., et al. 2020. Updated approaches against SARS-CoV-2. Antimicrob. Agents Chemother. 64, e00483-20.
40 Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y. and Li, S. 2020. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 92, 1-3   DOI
41 Lu, R., Zhao, X., Li, J., Niu, P., Yang, B. and Wu, H. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565-574.   DOI
42 Lu, R. and Wu, X. 2020. A novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. Int. J. Mol. 21, 2826.   DOI
43 Masters, P. S. 2006. The molecular biology of coronaviruses. Adv. Virus Res. 66, 193-292.   DOI
44 Mousavizadeh, L. and Ghasemi, S. 2020. Genotype and phenotype of COVID-19: Their roles in pathogenesis J. Microbiol. Immunol. Infect. doi: 10.1016/j.jmii.2020.03.022. Online ahead of print.
45 Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., Pan, P., Wang, W., Hu, D., Liu, X., Zhang, Q. and Wu, J. 2020. Coronavirus infections and immune responses. J. Med. Virol. 92, 424-432.   DOI
46 Mukama, O., Wu, J., Li, Z., Liang, Q., Yi, Z., Lu, X., Liu, Y., Liu,Y., Hussain, M., Makafe, G. G., Liu, J., Xu, N. and Zeng, L. 2020. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosens. Bioelectron. 159, 112143.   DOI
47 Ozcurumez, M. K., Ambrosch, A., Frey, O., Haselmann, V., Holdenrieder, S., Kiehntopf, M., Neumaier, M., Walter, M., Wenzel, F., Wolfel, R. and Renz, H. 2020. SARS-CoV-2 antibody testing-questions to be asked. J. Allergy Clin. Immunol. 146, 35-43.   DOI
48 Perlman, S. and Netland, J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7, 439-450.   DOI
49 Saberi, A., Gulyaeva, A. A., Brubacher, J. L., Newmark, P. A. and Gorbalenya, A. E. 2018. A planarian nidovirus expands the limits of RNA genome size. PLoS Pathog. 14, e1007314.   DOI
50 Schoeman, D. and Fielding, B. C. 2019. Coronavirus envelope protein: current knowledge. Virol. J. 16, 69.   DOI
51 Sethuraman, N., Jeremiah, S. S. and Ryo, A. 2020. Interpreting diagnostic tests for SARS-CoV-2. JAMA. 323, 2249-2251.   DOI
52 Shen, M., Yin, Z., Jiawei, Y. and AL-maskri, A. A. A. 2020. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal. 10, 97-101.   DOI
53 Sola, I., Almazan, F., Zuniga, S. and Enjuanes, L. 2015. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2, 265-288.   DOI
54 Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y. and Gao, G. F. 2016. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24, 490-502.   DOI
55 Pachetti, M., Marini, B., Benedetti, F., Giudici, F., Mauro, P., Storici, E., Masciovecchio, C., Angeletti, S., Ciccozzi, M., Gallo, R. C., Zella, D. and Ippodrino, R. 2020. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med. 18, 179.   DOI
56 Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y. and Du, L. 2020. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 17,613-620.   DOI
57 Tseng, Y. T., Wang, S. M., Huang, K. J., Lee, A. I., Chiang, C. C. and Wang, C. T. 2010. Self-assembly of severe acute respiratory syndrome coronavirus membrane protein. J. Biol. Chem. 285, 12862-12872.   DOI
58 van der Hoek, L. 2007. Human coronaviruses: what do they cause? Antivir. Ther. 12, 651-658.
59 Wang, S., Guo, F., Liu, K., Wang, H., Rao, S., Yang, P. and Jiang, C. 2008. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2. Virus Res. 136, 8-15.   DOI
60 Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J. and Qi, J. 2020. Structural and functional Basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894-904.   DOI
61 Whitman, J. D., Hiatt, J., Mowery, C. T., Shy, R. B., Yu, R., Yamamoto, T. N., Rathore, U., Goldgof, G. M. and Whitty, C., et al. 2020. Test performance evaluation of SARS- CoV-2 serological assays. medRxiv. 20074856.
62 WHO. Molecular assays to diagnose COVID-19: Summary table of available protocols. 2020 January 24. https://www.who.int/publications/m/item/molecular-assaysto-diagnose-covid-19-summary-table-of-available-protocols
63 WHO. Country & Technical Guidance - Coronavirus disease (COVID-19) https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance-publications
64 Tang, Y. W., Schmitz, J. E., Persing, D. H. and Stratton, C. W. 2020. Laboratory diagnosis of COVID-19: current issues and challenges. J. Clin. Microbiol. 26, e00512-520.
65 WHO. Laboratory testing strategy recommendations for COVID-19: interim guidance. 2020 March 21. https://apps.-who.int/iris/handle/10665/331509
66 Woo, P. C., Lau, S. K., Huang, Y. and Yuen, K. Y. 2009. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood) 234, 1117-1127.   DOI
67 Xu, Y., Liu, Y., Wu, Y., Xia, X., Liao, Y. and Li, Q. 2014. Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal. Chem. 86, 5611-5614   DOI
68 Younes, N., Al-Sadeq, D. W., Al-Jighefee, H., Younes, S., Al-Jamal, O., Daas, H. I., Yassine, H. M. and Nasrallah, G. K. 2020. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses 12, 582.   DOI