Browse > Article
http://dx.doi.org/10.4014/jmb.2206.06064

Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2  

Lee, Su Jin (Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology)
Kim, Yu-Jin (Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology)
Ahn, Dae-Gyun (Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.9, 2022 , pp. 1073-1085 More about this Journal
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARS-CoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.
Keywords
COVID-19; coronavirus; SARS-CoV-2; mechanism; pathogenesis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Belouzard S, Millet JK, Licitra BN, Whittaker GR. 2012. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4: 1011-1033.   DOI
2 Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3: 237-261.   DOI
3 Schoeman D, Fielding BC. 2019. Coronavirus envelope protein: current knowledge. Virol. J. 16: 69.   DOI
4 McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. 1967. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA 57: 933-940.   DOI
5 Chan PK, To KF, Lo AW, Cheung JL, Chu I, Au FW, et al. 2004. Persistent infection of SARS coronavirus in colonic cells in vitro. J. Med. Virol. 74: 1-7.   DOI
6 Christensen BB, Azar MM, Turbett SE. 2022. Laboratory diagnosis for SARS-CoV-2 infection. Infect. Dis. Clin. North Am. 36: 327-347.   DOI
7 Dalia Arostegui KC, Steven Schwarz, Katherine Vaidy, Simon Rabinowitz, Thomas Wallach. 2022. Persistent SARS-CoV-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute infection. JPGN Rep. 3: e152.   DOI
8 Wang X, Zhou Y, Jiang N, Zhou Q, Ma WL. 2020. Persistence of intestinal SARS-CoV-2 infection in patients with COVID-19 leads to re-admission after pneumonia resolved. Int. J. Infect. Dis. 95: 433-435.   DOI
9 Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367: 1814-1820.   DOI
10 Mizutani T, Fukushi S, Ishii K, Sasaki Y, Kenri T, Saijo M, et al. 2006. Mechanisms of establishment of persistent SARS-CoV-infected cells. Biochem. Biophys. Res. Commun. 347: 261-265.   DOI
11 Lee S, Yoon GY, Myoung J, Kim SJ, Ahn DG. 2020. Robust and persistent SARS-CoV-2 infection in the human intestinal brush border expressing cells. Emerg. Microbes Infect. 9: 2169-2179.   DOI
12 Kanwugu ON, Adadi P. 2021. HIV/SARS-CoV-2 coinfection: A global perspective. J. Med. Virol. 93: 726-732.   DOI
13 Pacciarini F, Ghezzi S, Canducci F, Sims A, Sampaolo M, Ferioli E, et al. 2008. Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein. J. Virol. 82: 5137-5144.   DOI
14 Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng CT, et al. 2008. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol. 82: 4471-4479.   DOI
15 Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, et al. 2020. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587: 657-662.   DOI
16 Au-Yeung N, Horvath CM. 2018. Transcriptional and chromatin regulation in interferon and innate antiviral gene expression. Cytokine Growth Factor Rev. 44: 11-17.   DOI
17 Huangfu WC, Fuchs SY. 2010. Ubiquitination-dependent regulation of signaling receptors in cancer. Genes Cancer 1: 725-734.   DOI
18 Michalska A, Blaszczyk K, Wesoly J, Bluyssen HAR. 2018. A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and type II IFN responses. Front. Immunol. 9: 1135.   DOI
19 Brierley I, Digard P, Inglis SC. 1989. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57: 537-547.   DOI
20 Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, et al. 2010. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6: e1000896.   DOI
21 Plant EP, Dinman JD. 2008. The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Front. Biosci. 13: 4873-4881.   DOI
22 Kelly JA, Olson AN, Neupane K, Munshi S, San Emeterio J, Pollack L, et al. 2020. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). J. Biol. Chem. 295: 10741-10748.   DOI
23 Zhang K, Zheludev IN, Hagey RJ, Haslecker R, Hou YJ, Kretsch R, et al. 2021. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 28: 747-754.   DOI
24 Ahn DG, Yoon GY, Lee S, Ku KB, Kim C, Kim KD, et al. 2021. A Novel Frameshifting inhibitor having antiviral activity against zoonotic coronaviruses. Viruses 13: 1639.   DOI
25 Irigoyen N, Firth AE, Jones JD, Chung BY, Siddell SG, Brierley I. 2016. High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog. 12: e1005473.   DOI
26 Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, et al. 2020. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res. 48: 12415-12435.   DOI
27 Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. 2022. Mutations and evolution of the SARS-CoV-2 spike protein. Viruses 14: 640.   DOI
28 Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. 2009. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol. 83: 6689-6705.   DOI
29 Lambeir AM, Durinx C, Scharpe S, De Meester I. 2003. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 40: 209-294.   DOI
30 WHO. 2022. Tracking SARS-CoV-2 variants. Available from https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. Accessed 03 February, 2022.
31 Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE, Decroly E, et al. 2014. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA 111: E3900-3909.
32 Ahn DG, Choi JK, Taylor DR, Oh JW. 2012. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch. Virol. 157: 2095-2104.   DOI
33 Riccio AA, Sullivan ED, Copeland WC. 2022. Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors. J. Biol. Chem. 298: 101518.   DOI
34 Roman C, Lewicka A, Koirala D, Li NS, Piccirilli JA. 2021. The SARS-CoV-2 programmed -1 ribosomal frameshifting element crystal structure solved to 2.09 A using chaperone-assisted RNA crystallography. ACS Chem. Biol. 16: 1469-1481.   DOI
35 Hoffmann M, Kleine-Weber H, Pohlmann S. 2020. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78: 779-784 e775.   DOI
36 Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, et al. 2017. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 91: e01953-16.
37 Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495: 251-254.   DOI
38 Hoffmann M, Hofmann-Winkler H, Pohlmann S. 2018. Priming time: How cellular proteases arm coronavirus spike proteins, pp. 71-98. In Bottcher-Friebertshauser E, Garten W, Klenk HD (eds.), Activation of Viruses by Host Proteases, Ed. Springer International Publishing, Cham
39 Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. 2011. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 85: 873-882.   DOI
40 Limburg H, Harbig A, Bestle D, Stein DA, Moulton HM, Jaeger J, et al. 2019. TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. J. Virol. 93: e00649-19.
41 Young BE, Wei WE, Fong SW, Mak TM, Anderson DE, Chan YH, et al. 2021. Association of SARS-CoV-2 clades with clinical, inflammatory and virologic outcomes: An observational study. EBioMedicine 66: 103319.   DOI
42 Hamre D, Procknow JJ. 1966. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 121: 190-193.   DOI
43 Tresnan DB, Levis R, Holmes KV. 1996. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70: 8669-8674.   DOI
44 Stauft CB, Lien CZ, Selvaraj P, Liu S, Wang TT. 2021. The G614 pandemic SARS-CoV-2 variant is not more pathogenic than the original D614 form in adult Syrian hamsters. Virology 556: 96-100.   DOI
45 Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. 2005. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102: 7988-7993.   DOI
46 Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, et al. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357: 420-422.   DOI
47 Williams RK, Jiang GS, Holmes KV. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. USA 88: 5533-5536.   DOI
48 Haniff HS, Tong Y, Liu X, Chen JL, Suresh BM, Andrews RJ, et al. 2020. Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders. ACS Cent. Sci. 6: 1713-1721.   DOI
49 Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, et al. 2014. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J. Gen. Virol. 95: 614-626.   DOI
50 Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, et al. 2020. SARS-CoV-2 Nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-beta production. Viruses 13: 47.   DOI
51 Sun Y, Abriola L, Niederer RO, Pedersen SF, Alfajaro MM, Silva Monteiro V, et al. 2021. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting. Proc. Natl. Acad. Sci. USA 118: e2023051118.   DOI
52 Kindler E, Jonsdottir HR, Muth D, Hamming OJ, Hartmann R, Rodriguez R, et al. 2013. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. mBio 4: e00611-00612.
53 Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181: 1016-1035.e.19.   DOI
54 Sun J, Zhu A, Li H, Zheng K, Zhuang Z, Chen Z, et al. 2020. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg. Microbes Infect. 9: 991-993.   DOI
55 Eslami N, Aghbash PS, Shamekh A, Entezari-Maleki T, Nahand JS, Sales AJ, et al. 2022. SARS-CoV-2: receptor and co-receptor tropism probability. Curr. Microbiol. 79: 133.   DOI
56 te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ. 2010. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic. Acids Res. 38: 203-214.   DOI
57 Viswanathan T, Arya S, Chan SH, Qi S, Dai N, Misra A, et al. 2020. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun. 11: 3718.   DOI
58 Nieto-Torres JL, DeDiego ML, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Fernandez-Delgado R, et al. 2014. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 10: e1004077.   DOI
59 Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, et al. 2006. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc. Natl. Acad. Sci. USA103: 12885-12890.
60 Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, et al. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. USA 106: 3484-3489.   DOI
61 Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, et al. 2012. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7: e43031.   DOI
62 Nakagawa K, Narayanan K, Wada M, Makino S. 2018. Inhibition of stress granule formation by middle east respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. J. Virol. 92: e00902-18.
63 Gao B, Gong X, Fang S, Weng W, Wang H, Chu H, et al. 2021. Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. PLoS Pathog. 17: e1008690.   DOI
64 Zheng ZQ, Wang SY, Xu ZS, Fu YZ, Wang YY. 2021. SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication. Cell Discov. 7: 38.
65 Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, et al. 2007. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 282: 32208-32221.   DOI
66 Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, et al. 2020. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine 61: 103104.   DOI
67 Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, et al. 2021. Syncytia formation by SARS-CoV-2-infected cells. EMBO J. 40: e107405.   DOI
68 Zhu N, Wang W, Liu Z, Liang C, Wang W, Ye F, et al. 2020. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat. Commun. 11: 3910.   DOI
69 Meyer K, Patra T, Vijayamahantesh, Ray R. 2021. SARS-CoV-2 spike protein induces paracrine senescence and leukocyte adhesion in endothelial cells. J. Virol. 95: e0079421.   DOI
70 McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, et al. 2021. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184: 2332-2347.e16.   DOI
71 Law PTW, Wong CH, Au TCC, Chuck CP, Kong SK, Chan PKS, et al. 2005. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J. Gen. Virol. 86: 1921-1930.   DOI
72 Munshi S, Neupane K, Ileperuma SM, Halma MTJ, Kelly JA, Halpern CF, et al. 2022. Identifying inhibitors of -1 programmed ribosomal frameshifting in a broad spectrum of coronaviruses. Viruse 14: 177.   DOI
73 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382: 727-733.   DOI
74 Wolff G, Limpens R, Zevenhoven-Dobbe JC, Laugks U, Zheng S, de Jong AWM, et al. 2020. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369: 1395-1398.   DOI
75 Shang C, Liu Z, Zhu Y, Lu J, Ge C, Zhang C, et al. 2021. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front. Microbiol. 12: 780768.
76 Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. 2020. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 31: 1068-1077. e1063.   DOI
77 Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. 2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J. Virol. 81: 12135-12144.   DOI
78 Russo LC, Tomasin R, Matos IA, Manucci AC, Sowa ST, Dale K, et al. 2021. The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. J. Biol. Chem. 297: 101041.   DOI
79 Forni D, Cagliani R, Mozzi A, Pozzoli U, Al-Daghri N, Clerici M, et al. 2016. Extensive positive selection erives the evolution of nonstructural proteins in lineage C betacoronaviruses. J. Virol. 90: 3627-3639.   DOI
80 Evangelou K, Veroutis D, Paschalaki K, Foukas PG, Lagopati N, Dimitriou M, et al. 2022. Pulmonary infection by SARS-CoV-2 induces senescence accompanied by an inflammatory phenotype in severe COVID-19: possible implications for viral mutagenesis. Eur. Respir. J. 60: 2102951.   DOI
81 Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395: 1054-1062.   DOI
82 Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. 2020. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 395: 1763-1770.   DOI
83 Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S, Strazzabosco G, et al. 2021. TLR3 and TLR7 RNA sensor activation during SARS-CoV-2 infection. Microorganisms 9: 1820.   DOI
84 Xagorari A, Chlichlia K. 2008. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol. J. 2: 49-59.   DOI
85 Scheuplein VA, Seifried J, Malczyk AH, Miller L, Hocker L, Vergara-Alert J, et al. 2015. High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J. Virol. 89: 3859-3869.   DOI
86 Cervantes-Barragan L, Zust R, Weber F, Spiegel M, Lang KS, Akira S, et al. 2007. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109: 1131-1137.   DOI
87 Maginnis MS. 2018. Virus-receptor interactions: The key to cellular invasion. J. Mol. Biol. 430: 2590-2611.   DOI
88 Rona G, Zeke A, Miwatani-Minter B, de Vries M, Kaur R, Schinlever A, et al. 2022. The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target. Cell Death Differ. 29: 285-292.   DOI
89 Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. 2020. The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2. J. Virol. 94: e01246-20.
90 Schultze B, Herrler G. 1993. Recognition of N-acetyl-9-O-acetylneuraminic acid by bovine coronavirus and hemagglutinating encephalomyelitis virus. Adv. Exp. Med. Biol. 342: 299-304.   DOI
91 Swets MC, Russell CD, Harrison EM, Docherty AB, Lone N, Girvan M, et al. 2022. SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet 399: 1463-1464.   DOI
92 DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, Regla-Nava JA, Alvarez E, Oliveros JC, et al. 2011. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog. 7: e1002315.   DOI
93 Zhao Z, Wei Y, Tao C. 2021. An enlightening role for cytokine storm in coronavirus infection. Clin. Immunol. 222: 108615.   DOI
94 Wang J, Jiang M, Chen X, Montaner LJ. 2020. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc Biol. 108: 17-41.   DOI
95 Geretti AM, Stockdale AJ, Kelly SH, Cevik M, Collins S, Waters L, et al. 2021. Outcomes of coronavirus disease 2019 (COVID-19) related hospitalization among people with human immunodeficiency virus (HIV) in the ISARIC World Health Organization (WHO) clinical characterization protocol (UK): A prospective observational study. Clin. Infect. Dis. 73: e2095-e2106.   DOI
96 Davies MA. 2020. HIV and risk of COVID-19 death: a population cohort study from the Western cape province, South Africa. medRxiv. doi: 10.1101/2020.07.02.20145185. Preprint.   DOI
97 F Karim MM, BI Gosnell, S Cele, J Giandhari, S Pillay, H Tegally, et al. 2021. Persistent SARS-CoV-2 infection and intra-host evolution in association with advanced HIV infection. medRxiv. doi: https://doi.org/10.1101/2021.06.03.21258228.   DOI
98 Qureshi AI, Baskett WI, Huang W, Lobanova I, Hasan Naqvi S, Shyu CR. 2022. Reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients undergoing serial laboratory testing. Clin. Infect. Dis. 74: 294-300.   DOI
99 Nguyen NN, Houhamdi L, Hoang VT, Delerce J, Delorme L, Colson P, et al. 2022. SARS-CoV-2 reinfection and COVID-19 severity. Emerg. Microbes Infect. 11: 894-901.   DOI
100 Baang JH, Smith C, Mirabelli C, Valesano AL, Manthei DM, Bachman MA, et al. 2021. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient. J. Infect. Dis. 223: 23-27.   DOI
101 Choi B, Choudhary MC, Regan J, Sparks JA, Padera RF, Qiu X, et al. 2020. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383: 2291-2293.   DOI
102 Freundt EC, Yu L, Goldsmith CS, Welsh S, Cheng A, Yount B, et al. 2010. The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J. Virol. 84: 1097-1109.   DOI
103 Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. 2021. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 17: e1009212.   DOI
104 Bayati A, Kumar R, Francis V, McPherson PS. 2021. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 296: 100306.   DOI
105 Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271-280 e278.   DOI
106 Li F, Li J, Wang PH, Yang N, Huang J, Ou J, et al. 2021. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling. Biochim. Biophys. Acta Mol. Basis Dis. 1867: 166260.   DOI
107 Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature 581: 221-224.   DOI
108 Mdkhana B, Saheb Sharif-Askari N, Ramakrishnan RK, Goel S, Hamid Q, Halwani R. 2021. Nucleic acid-sensing pathways during SARS-CoV-2 infection: Expectations versus reality. J. Inflamm. Res. 14: 199-216.   DOI
109 Thorne LG, Reuschl AK, Zuliani-Alvarez L, Whelan MVX, Turner J, Noursadeghi M, et al. 2021. SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation. EMBO J. 40: e107826.   DOI
110 Xu RH, He JF, Evans MR, Peng GW, Field HE, Yu DW, et al. 2004. Epidemiologic clues to SARS origin in China. Emerg. Infect. Dis. 10: 1030-1037.   DOI
111 Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res. 117: 17-37.   DOI
112 Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7: 439-450.   DOI
113 Cheever FS, Daniels JB. 1949. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. J. Exp. Med. 90: 181-210.   DOI
114 Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367: 1444-1448.   DOI
115 Yoshimoto FK. 2020. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 39: 198-216.   DOI
116 Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, et al. 1992. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357: 417-420.   DOI
117 Bonavia A, Zelus BD, Wentworth DE, Talbot PJ, Holmes KV. 2003. Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J. Virol. 77: 2530-2538.   DOI
118 Plant EP, Sims AC, Baric RS, Dinman JD, Taylor DR. 2013. Altering SARS coronavirus frameshift efficiency affects genomic and subgenomic RNA production. Viruses 5: 279-294.   DOI
119 Plant EP, Perez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig M, Dinman JD. 2005. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol. 3: e172.   DOI
120 Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, et al. 2021. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J. Biomed. Sci. 28: 9.   DOI
121 Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. 2020. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 9: 186.   DOI
122 Forni D, Cagliani R, Clerici M, Sironi M. 2017. Molecular evolution of human coronavirus genomes. Trends Microbiol. 25: 35-48.   DOI
123 Cunningham CH, Stuart HO. 1947. Cultivation of the virus of infectious bronchitis of chickens in embryonated chicken eggs. Am. J. Vet. Res. 8: 209-212.
124 Jackson CB, Farzan M, Chen B, Choe H. 2022. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23: 3-20.   DOI
125 Beyer DK, Forero A. 2022. Mechanisms of antiviral immune evasion of SARS-CoV-2. J. Mol. Biol. 434: 167265.   DOI
126 Rashid F, Dzakah EE, Wang H, Tang S. 2021. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta. Virus Res. 296: 198350.   DOI
127 Ren Y, Shu T, Wu D, Mu J, Wang C, Huang M, et al. 2020. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell. Mol. Immunol. 17: 881-883.   DOI
128 Akutsu M, Ye Y, Virdee S, Chin JW, Komander D. 2011. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc. Natl. Acad. Sci. USA 108: 2228-2233.   DOI
129 Andrew AJ, Miyagi E, Kao S, Strebel K. 2009. The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology 6: 80.   DOI
130 Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. 2013. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500: 227-231.   DOI
131 Millet JK, Whittaker GR. 2018. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology 517: 3-8.   DOI
132 Millet JK, Whittaker GR. 2014. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. USA 111: 15214-15219.   DOI
133 Takeda M. 2022. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol. Immunol. 66: 15-23.   DOI
134 Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. 2010. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84: 12658-12664.   DOI
135 Shirato K, Kawase M, Matsuyama S. 2013. Middle east respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol. 87: 12552-12561.   DOI
136 Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. 2012. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl. Acad. Sci. USA 109: 9372-9377.   DOI
137 Fung TS, Liu DX. 2014. Coronavirus infection, ER stress, apoptosis and innate immunity. Front. Microbiol. 5: 296.   DOI
138 Bull JJ, Lauring AS. 2014. Theory and empiricism in virulence evolution. PLoS Pathog. 10: e1004387.   DOI
139 Xia S, Liu Q, Wang Q, Sun Z, Su S, Du L, et al. 2014. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 194: 200-210.   DOI
140 Kirchdoerfer RN, Ward AB. 2019. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 10: 2342.   DOI
141 Bouvet M, Lugari A, Posthuma CC, Zevenhoven JC, Bernard S, Betzi S, et al. 2014. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J. Biol. Chem. 289: 25783-25796.   DOI
142 Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. 2020. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368: 1499-1504.   DOI
143 Gao X, Zhu K, Qin B, Olieric V, Wang M, Cui S. 2021. Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Nat. Commun. 12: 2843.   DOI
144 Taylor JK, Coleman CM, Postel S, Sisk JM, Bernbaum JG, Venkataraman T, et al. 2015. Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference. J. Virol. 89: 11820-11833.   DOI
145 Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H, et al. 2020. Evasion of Type I interferon by SARS-CoV-2. Cell Rep. 33: 108234.   DOI
146 Yang Y, Ye F, Zhu N, Wang W, Deng Y, Zhao Z, et al. 2015. Middle east respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci. Rep. 5: 17554.   DOI
147 Hayn M, Hirschenberger M, Koepke L, Nchioua R, Straub JH, Klute S, et al. 2021. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep. 35: 109126.   DOI
148 Minakshi R, Padhan K, Rani M, Khan N, Ahmad F, Jameel S. 2009. The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4: e8342.   DOI
149 Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS, et al. 2020. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc. Natl. Acad. Sci. USA 117: 28344-28354.   DOI
150 Zhao MM, Zhu Y, Zhang L, Zhong G, Tai L, Liu S, et al. 2022. Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discov. 8: 53.
151 Li JY, Zhou ZJ, Wang Q, He QN, Zhao MY, Qiu Y, et al. 2021. Innate immunity evasion strategies of highly pathogenic coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2. Front. Microbiol. 12: 770656.   DOI
152 Tang X, Uhl S, Zhang T, Xue D, Li B, Vandana JJ, et al. 2021. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 33: 1577-1591.e7.   DOI
153 Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. 2020. Structure of replicating SARS-CoV-2 polymerase. Nature 584: 154-156.   DOI
154 Oudshoorn D, Rijs K, Limpens R, Groen K, Koster AJ, Snijder EJ, et al. 2017. Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication. mBio 8: e01658-17.
155 Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. 2013. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio 4: e00524-13.
156 Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, et al. 2020. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 11: 5885.   DOI
157 Chang LJ, Chen TH. 2021. NSP16 2'-O-MTase in coronavirus pathogenesis: Possible prevention and treatments strategies. Viruses 13: 538.   DOI
158 Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM. 2012. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog. 8: e1002859.   DOI
159 Wu K, Li W, Peng G, Li F. 2009. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc. Natl. Acad. Sci. U SA 106: 19970-19974.   DOI
160 Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24: 1634-1643.   DOI
161 Brodin P, Casari G, Townsend L, O'Farrelly C, Tancevski I, Loffler-Ragg J, et al. 2022. Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nat. Med. 28: 879-882.   DOI
162 Park A, Iwasaki A. 2020. Type I and Type III interferons - Induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 27: 870-878.   DOI
163 Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81: 548-557.   DOI
164 Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. 2021. Post-acute COVID-19 syndrome. Nat. Med. 27: 601-615.   DOI
165 Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. 2021. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2: e13-e22.   DOI
166 Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al. 2020. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N. Engl. J. Med. 382: 2081-2090.   DOI
167 Park WB, Poon LLM, Choi SJ, Choe PG, Song KH, Bang JH, et al. 2018. Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection. Int. J. Infect. Dis. 72: 8-10.   DOI
168 Frampton D, Rampling T, Cross A, Bailey H, Heaney J, Byott M, et al. 2021. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect. Dis. 21: 1246-1256.   DOI
169 Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, et al. 2021. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science 373: eabi6226.   DOI
170 Hikmet F, Mear L, Edvinsson A, Micke P, Uhlen M, Lindskog C. 2020. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 16: e9610.   DOI
171 Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, et al. 2021. Genomics and epidemiology of the P.1 SARSCoV-2 lineage in Manaus, Brazil. Science 372: 815-821.   DOI
172 Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, et al. 2015. Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J. Virol. 89: 7202-7213.   DOI
173 Oh MD, Park WB, Choe PG, Choi SJ, Kim JI, Chae J, et al. 2016. Viral load kinetics of MERS coronavirus infection. N. Engl. J. Med. 375: 1303-1305.   DOI
174 Xu D, Zhang Z, Jin L, Chu F, Mao Y, Wang H, et al. 2005. Persistent shedding of viable SARS-CoV in urine and stool of SARS patients during the convalescent phase. Eur. J. Clin. Microbiol. Infect. Dis. 24: 165-171.   DOI
175 WHO Coronavirus (COVID-19) Dashboard. Available from https://covid19.who.int/. Accessed 24 June, 2020.
176 Salamanna F, Maglio M, Landini MP, Fini M. 2020. Body localization of ACE-2: On the trail of the Keyhole of SARS-CoV-2. Front. Med (Lausanne). 7: 594495.   DOI
177 Liu J, Li Y, Liu Q, Yao Q, Wang X, Zhang H, et al. 2021. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov. 7: 17.
178 Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. 2020. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158: 1831-1833.e3.   DOI
179 Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. 2020. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 46: 1339-1348.   DOI
180 van der Velden VH, Wierenga-Wolf AF, Adriaansen-Soeting PW, Overbeek SE, Moller GM, Hoogsteden HC, et al. 1998. Expression of aminopeptidase N and dipeptidyl peptidase IV in the healthy and asthmatic bronchus. Clin. Exp. Allergy 28: 110-120.   DOI
181 Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. 2021. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372: eabg3055.   DOI
182 Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. 2020. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182: 1284-1294. e9.   DOI
183 Lorenzo-Redondo R, Nam HH, Roberts SC, Simons LM, Jennings LJ, Qi C, et al. 2020. A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways. EBioMedicine 62: 103112.   DOI
184 Zhao S, Lou J, Cao L, Zheng H, Chong MKC, Chen Z, et al. 2021. Quantifying the transmission advantage associated with N501Y substitution of SARS-CoV-2 in the UK: an early data-driven analysis. J. Travel Med. 28: taab001.   DOI
185 Kim YJ, Jang US, Soh SM, Lee JY, Lee HR. 2021. The impact on infectivity and neutralization efficiency of SARS-CoV-2 lineage B.1.351 pseudovirus. Viruses 13: 633.   DOI
186 Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, et al. 2021. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184: 3426-3437. e8.   DOI
187 Moeller NH, Shi K, Demir O, Belica C, Banerjee S, Yin L, et al. 2022. Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN. 119: e2106379119.
188 Yao H, Lu X, Chen Q, Xu K, Chen Y, Cheng M, et al. 2020. Patient-derived SARS-CoV-2 mutations impact viral replication dynamics and infectivity in vitro and with clinical implications in vivo. Cell Discov. 6: 76.
189 Maio N, Lafont BAP, Sil D, Li Y, Bollinger JM, Jr., Krebs C, et al. 2021. Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science 373: 236-241.   DOI
190 Czarna A, Plewka J, Kresik L, Matsuda A, Karim A, Robinson C, et al. 2022. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity. Structure 30: 1050-5041.e2.   DOI
191 Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181: 281-292 e286.   DOI
192 Naydenova K, Muir KW, Wu LF, Zhang Z, Coscia F, Peet MJ, et al. 2021. Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc. Natl. Acad. Sci. USA 118: e2021946118.   DOI
193 Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, et al. 2020. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183: 739-751.e8.   DOI
194 Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. 2021. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19: 409-424.   DOI
195 Krempl C, Schultze B, Herrler G. 1995. Analysis of cellular receptors for human coronavirus OC43. Adv. Exp. Med. Biol. 380: 371-374.   DOI
196 Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. 2020. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B. 10: 766-788.   DOI
197 Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA 102: 11876-11881.   DOI
198 Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. 2012. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 86: 6537-6545.   DOI
199 Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, et al. 2014. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl. Acad. Sci. USA 111: 12516-12521.   DOI
200 Liu W, Tang F, Fontanet A, Zhan L, Zhao QM, Zhang PH, et al. 2004. Long-term SARS coronavirus excretion from patient cohort, China. Emerg. Infect. Dis. 10: 1841-1843.   DOI