• Title/Summary/Keyword: SARS coronavirus

Search Result 266, Processing Time 0.024 seconds

Blood test results from simultaneous infection of other respiratory viruses in COVID-19 patients

  • In Soo, Rheem;Jung Min, Park;Seung Keun, Ham;Jae Kyung, Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.316-321
    • /
    • 2022
  • Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly, infecting millions of people worldwide. On March 11, 2020, the World Health Organization declared coronavirus disease (COVID-19) a pandemic owing to the worldwide spread of SARS-CoV-2, which created an unprecedented burden on the global healthcare system. In this context, there are increasing concerns regarding co-infections with other respiratory viruses, such as the influenza virus. In this study, clinical data of patients infected with SARS-CoV-2 and other respiratory viruses were compared with patients infected with SARS-CoV-2 alone. The hematology and blood biochemistry results of 178 patients infected with SARS-CoV-2 , who were tested on admission, were retrospectively reviewed. In patients with SARS-CoV-2 and adenovirus co-infection, C-reactive protein levels were elevated on admission, whereas lactate dehydrogenase (LDH), prothrombin time, international normalized ratio, activated partial thromboplastin clotting time, and bilirubin values were all within the normal range. Moreover, patients with SARS-CoV-2 and human bocavirus co-infection had low LDH and high bilirubin levels on admission. These findings reveal the clinical features of respiratory virus and SARS-CoV-2 co-infections and support the development of appropriate approaches for treating patients with SARS-CoV-2 and other respiratory virus co-infections.

Are Patients with Asthma and Chronic Obstructive Pulmonary Disease Preferred Targets of COVID-19?

  • Bouazza, Belaid;Hadj-Said, Dihia;Pescatore, Karen A.;Chahed, Rachid
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.1
    • /
    • pp.22-34
    • /
    • 2021
  • The coronavirus pandemic, known as coronavirus disease 2019 (COVID-19), is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus first identified in patients from Wuhan, China. Since December 2019, SARS-CoV-2 has spread swiftly around the world, infected more than 25 million people, and caused more than 800,000 deaths in 188 countries. Chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) appear to be risk factors for COVID-19, however, their prevalence remains controversial. In fact, studies in China reported lower rates of chronic respiratory conditions in patients with COVID-19 than in the general population, while the trend is reversed in the United States and Europe. Although the underlying molecular mechanisms of a possible interaction between COVID-19 and chronic respiratory diseases remain unknown, some observations can help to elucidate them. Indeed, physiological changes, immune response, or medications used against SARS-CoV-2 may have a greater impact on patients with chronic respiratory conditions already debilitated by chronic inflammation, dyspnea, and the use of immunosuppressant drugs like corticosteroids. In this review, we discuss importance and the impact of COVID-19 on asthma and COPD patients, the possible available treatments, and patient management during the pandemic.

Diagnostic Techniques for SARS-CoV-2 Detection (SARS-CoV-2의 진단기술)

  • Kim, Jong-Sik;Kang, Na-Kyung;Park, Seon-Mi;Lee, Eun-Joo;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.731-741
    • /
    • 2020
  • Coronavirus disease 19 (COVID-19) is caused by SARS-CoV-2 (Severe Acute Respiratory SyndromeCoronavirus 2). To date, seven coronaviruses that can infect humans were reported. Among them, infections with four coronavirus strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) resulted in mild symptoms such as common cold, whereas SARS-CoV and MERS-CoV caused severe symptoms and epidemics in 2002 and 2012, respectively. In the most recent, SARS-CoV-2 was first reported in Wuhan, China in December 2019 and became a notorious cause of the ongoing global pandemics. To diagnose, treat, and prevent COVID-19, the development of rapid and accurate diagnostic tools, specific therapeutic drugs, and safe vaccines essentially are required. In order to develop these powerful tools, it is prerequisite to understand a phenotype, a genotype, and life cycle of SARS-CoV-2. Diagnostic techniques have been developing rapidly around world and many countries take the fast track system to accelerate approval. Approved diagnostic devices are rapidly growing facing to urgent demand to identify carriers. Currently developed commercial diagnostic devices are divided into mainly two categories: molecular assay and serological & immunological assay. Molecular assays begins the reverse transcription step following polymerase chain reaction or isothermal amplification. Immunological assay targets SARS-CoV-2 antigen or anti-SARS-CoV-2 antibody of samples. In this review, we summarize the phenotype, genome structure and gene expression of SARS-CoV-2 and provide the knowledge on various diagnostic techniques for SARS-CoV-2.

Phenotypes and Functions of SARS-CoV-2-Reactive T Cells

  • Jung, Min Kyung;Shin, Eui-Cheol
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.401-407
    • /
    • 2021
  • Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.

SARS-CoV-2-Specific T Cell Responses in Patients with COVID-19 and Unexposed Individuals

  • Min-Seok Rha;A Reum Kim;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.2.1-2.11
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), an ongoing pandemic disease. In the current review, we describe SARS-CoV-2-specific CD4+ and CD8+ T-cell responses in acute and convalescent COVID-19 patients. We also discuss the relationships between COVID-19 severity and SARS-CoV-2-specific T-cell responses and summarize recent reports regarding SARS-CoV-2-reactive T cells in SARS-CoV-2-unexposed individuals. These T cells may be cross-reactive cells primed by previous infection with human common-cold coronaviruses. Finally, we outline SARS-CoV-2-specific T-cell responses in the context of vaccination. A better understanding of SARS-CoV-2-specific T-cell responses is needed to develop effective vaccines and therapeutics.

The impact of COVID-19 on human reproduction and directions for fertility treatment during the pandemic

  • Lee, Dayong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.273-282
    • /
    • 2021
  • Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly, resulting in a pandemic. The virus enters host cells through angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2). These enzymes are widely expressed in reproductive organs; hence, coronavirus disease 2019 (COVID-19) could also impact human reproduction. Current evidence suggests that sperm cells may provide an inadequate environment for the virus to penetrate and spread. Oocytes within antral follicles are surrounded by cumulus cells, which rarely express ACE2 and TMPRSS2. Thus, the possibility of transmission of the virus through sexual intercourse and assisted reproductive techniques seems unlikely. Early human embryos express coronavirus entry receptors and proteases, implying that human embryos are potentially vulnerable to SARS-CoV-2 in the early stages of development. Data on the expression of ACE2 and TMPRSS2 in the human endometrium are sparse. Moreover, it remains unclear whether SARS-CoV-2 directly affects the embryo and its implantation. A study of the effect of SARS-CoV-2 on pregnancy showed an increase in preterm delivery. Thus, vertical transmission of the virus from mother to fetus in the third trimester is possible, and further data on human reproduction are required to establish this possibility. Based on analyses of existing data, major organizations in this field have published guidelines on the treatment of infertility. Regarding these guidelines, despite the COVID-19 pandemic, reproductive treatment is crucial for the well-being of society and must be continued under suitable regulations and good standard laboratory practice protocols.

Experimental Models for SARS-CoV-2 Infection

  • Kim, Taewoo;Lee, Jeong Seok;Ju, Young Seok
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.377-383
    • /
    • 2021
  • Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a novel virus that causes coronavirus disease 2019 (COVID-19). To understand the identity, functional characteristics and therapeutic targets of the virus and the diseases, appropriate infection models that recapitulate the in vivo pathophysiology of the viral infection are necessary. This article reviews the various infection models, including Vero cells, human cell lines, organoids, and animal models, and discusses their advantages and disadvantages. This knowledge will be helpful for establishing an efficient system for defense against emerging infectious diseases.

Germinal Center Response to mRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination

  • Wooseob Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.4
    • /
    • pp.28.1-28.13
    • /
    • 2024
  • Vaccines are the most effective intervention currently available, offering protective immunity against targeted pathogens. The emergence of the coronavirus disease 2019 pandemic has prompted rapid development and deployment of lipid nanoparticle encapsulated, mRNA-based vaccines. While these vaccines have demonstrated remarkable immunogenicity, concerns persist regarding their ability to confer durable protective immunity to continuously evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. This review focuses on human B cell responses induced by SARS-CoV-2 mRNA vaccination, with particular emphasis on the crucial role of germinal center reactions in shaping enduring protective immunity. Additionally, we explored observations of immunological imprinting and dynamics of recalled pre-existing immunity following variants of concern-based booster vaccination. Insights from this review contribute to comprehensive understanding B cell responses to mRNA vaccination in humans, thereby refining vaccination strategies for optimal and sustained protection against evolving coronavirus variants.

MUC1-C influences cell survival in lung adenocarcinoma Calu-3 cells after SARS-CoV-2 infection

  • Kim, Dongbum;Maharjan, Sony;Kim, Jinsoo;Park, Sangkyu;Park, Jeong-A;Park, Byoung Kwon;Lee, Younghee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.425-430
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces coronavirus disease 2019 (COVID-19) and may increase the risk of adverse outcomes in lung cancer patients. In this study, we investigated the expression and function of mucin 1 (MUC1) after SARS-CoV-2 infection in the lung epithelial cancer cell line Calu-3. MUC1 is a major constituent of the mucus layer in the respiratory tract and contributes to pathogen defense. SARS-CoV-2 infection induced MUC1 C-terminal subunit (MUC1-C) expression in a STAT3 activation-dependent manner. Inhibition of MUC1-C signaling increased apoptosis-related protein levels and reduced proliferation-related protein levels; however, SARS-CoV-2 replication was not affected. Together, these results suggest that increased MUC1-C expression in response to SARS-CoV-2 infection may trigger the growth of lung cancer cells, and COVID-19 may be a risk factor for lung cancer patients.

SARS-CoV-2 Antibody Neutralization Assay Platforms Based on Epitopes Sources: Live Virus, Pseudovirus, and Recombinant S Glycoprotein RBD

  • Endah Puji Septisetyani;Pekik Wiji Prasetyaningrum;Khairul Anam;Adi Santoso
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.39.1-39.18
    • /
    • 2021
  • The high virulent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that emerged in China at the end of 2019 has generated novel coronavirus disease, coronavirus disease 2019 (COVID-19), causing a pandemic worldwide. Every country has made great efforts to struggle against SARS-CoV-2 infection, including massive vaccination, immunological patients' surveillance, and the utilization of convalescence plasma for COVID-19 therapy. These efforts are associated with the attempts to increase the titers of SARS-CoV-2 neutralizing Abs (nAbs) generated either after infection or vaccination that represent the body's immune status. As there is no standard therapy for COVID-19 yet, virus eradication will mainly depend on these nAbs contents in the body. Therefore, serological nAbs neutralization assays become a requirement for researchers and clinicians to measure nAbs titers. Different platforms have been developed to evaluate nAbs titers utilizing various epitopes sources, including neutralization assays based on the live virus, pseudovirus, and neutralization assays utilizing recombinant SARS-CoV-2 S glycoprotein receptor binding site, receptor-binding domain. As a standard neutralization assay, the plaque reduction neutralization test (PRNT) requires isolation and propagation of live pathogenic SARS-CoV-2 virus conducted in a BSL-3 containment. Hence, other surrogate neutralization assays relevant to the PRNT play important alternatives that offer better safety besides facilitating high throughput analyses. This review discusses the current neutralization assay platforms used to evaluate nAbs, their techniques, advantages, and limitations.