• 제목/요약/키워드: SARIMA 모델

검색결과 19건 처리시간 0.028초

스마트팜 데이터를 활용한 오이 출하량 예측 시계열 모델 연구 (A Study on Time Series Models for Predicting Cucumber Shipment Using Smart Farm Data)

  • 이혜경;신창선
    • 스마트미디어저널
    • /
    • 제13권10호
    • /
    • pp.59-66
    • /
    • 2024
  • 본 연구는 스마트팜 현장에서 수집한 농촌진흥청 데이터를 활용해 오이 출하량에 영향을 미치는 주요 변수를 확인하고, 다양한 예측 모델을 비교 분석하여 최적의 예측 모델을 제안한다. 연구 데이터는 36개의 작기별로 수집된 기상 조건, 재배 환경, 관리 활동 등의 변수를 포함하며, 예측 모델로는 다중회귀분석, ARIMA, LSTM, SARIMA를 사용했다. 성능은 RMSE와 MAE로 평가되었으며, SARIMA 모델이 가장 우수한 성능을 보였다. 하이퍼파라미터 조정을 통해 SARIMA 모델의 예측 정확도가 향상되었으며, 이는 오이 출하량이 계절성에 크게 의존하는 특성을 효과적으로 반영한 결과이다.

SARIMA 모델을 이용한 태양광 발전량 예측연구 (A Research of Prediction of Photovoltaic Power using SARIMA Model)

  • 정하영;홍석훈;전재성;임수창;김종찬;박형욱;박철영
    • 한국멀티미디어학회논문지
    • /
    • 제25권1호
    • /
    • pp.82-91
    • /
    • 2022
  • In this paper, time series prediction method of photovoltaic power is introduced using seasonal autoregressive integrated moving average (SARIMA). In order to obtain the best fitting model by a time series method in the absence of an environmental sensor, this research was used data below 50% of cloud cover. Three samples were extracted by time intervals from the raw data. After that, the best fitting models were derived from mean absolute percentage error (MAPE) with the minimum akaike information criterion (AIC) or beysian information criterion (BIC). They are SARIMA (1,0,0)(0,2,2)14, SARIMA (1,0,0)(0,2,2)28, SARIMA (2,0,3)(1,2,2)55. Generally parameter of model derived from BIC was lower than AIC. SARIMA (2,0,3)(1,2,2)55, unlike other models, was drawn by AIC. And the performance of models obtained by SARIMA was compared. MAPE value was affected by the seasonal period of the sample. It is estimated that long seasonal period samples include atmosphere irregularity. Consequently using 1 hour or 30 minutes interval sample is able to be helpful for prediction accuracy improvement.

SARIMA 모형을 이용한 우리나라 항만 컨테이너 물동량 예측 (Forecasting the Korea's Port Container Volumes With SARIMA Model)

  • 민경창;하헌구
    • 대한교통학회지
    • /
    • 제32권6호
    • /
    • pp.600-614
    • /
    • 2014
  • 본 연구는 SARIMA 모형을 활용하여 기존에 다루어지지 않았던 분기별 항만 컨테이너 물동량을 예측하였다. 구체적으로 모델 추정에 활용된 자료는 1994년 1사분기부터 2010년 4사분기까지 총 84분기동안의 국내 전체 항만 컨테이너 물동량 자료이다. 본 연구에서 추정된 예측 모형의 예측 정확도를 검증하기 위하여 2011년 1사분기부터 2013년 4사분기까지 물동량을 예측하여 실제 물동량과 비교하였다. 또한 기존에 널리 활용되고 있는 ARIMA 모형을 활용하여 추정한 예측 모형과의 비교를 통해 분기별 항만 물동량 예측에 있어서 SARIMA 모형의 상대적 우수성을 검증하였다. 기존에 항만 물동량을 예측하는 대부분의 연구는 주로 장기 예측에 초점이 맞추어져 있다. 또한 월별, 연도별 물동량 자료가 활용된 경우가 대부분이다. 분기별 항만 컨테이너 물동량 자료를 활용하여 단기 수요를 예측함과 동시에 SARIMA 모형의 우수성을 입증한 본 연구는 충분한 가치가 있다고 판단된다.

SARIMA 모델을 기반으로 한 선로 이용률의 동적 임계값 학습 기법 (Learning Algorithm of Dynamic Threshold in Line Utilization based SARIMA model)

  • 조강홍;안성진;정진욱
    • 정보처리학회논문지C
    • /
    • 제9C권6호
    • /
    • pp.841-846
    • /
    • 2002
  • 이 논문에서는 네트워크의 QoS에 가장 큰 영향을 미치는 네트워크 선로 이용률의과거 데이터를 기반으로 단기간 예측과 계절성(seasonality) 예측에 적합한 계절자기회귀이동평균(SARIMA : seasonal ARIMA) 모형을 적용하여 네트워크 특성을 고려한 동적인 임계값을 학습하는 알고리즘을 제시하였다. 이 기법을 통해 선로 이용률의 임계값은 네트워크환경과 시간에 따라 동적으로 변경되며, 확률을 근거로 그 신뢰성을 제공할 수 있다. 또한,실제 환경을 통하여 제시한 모델의 적합성 여부를 평가하였으며, 알고리즘의 성능을 실험하였다. 네트워크 관리자들은 이 알고리즘을 통하여 고정 임계값이 가지는 단점을 극복할 수있을 것이며, 관리 행위의 효율성을 높일 수 있을 것이다.

SARIMA모형을 이용한 코로나19 확진자수 예측 (Prediction of Covid-19 confirmed number of cases using SARIMA model)

  • 김재호;김장영
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.58-63
    • /
    • 2022
  • 코로나19의 일일 확진자 수는 천명 후반대에서 2천명대를 유지하고 있으며, 백신접종률이 증가함에도 불구하고 확진자수가 쉽게 줄어들지 않는 상황이다. 변이바이러스는 계속해서 등장하고, 현재는 뮤 변이 바이러스까지 국내에 유입되었다. 본 논문은 코로나 예방전략을 위해 SARIMA 모델을 통해 코로나19 국내 확진자 수를 예측한다. ADF Test와 KPSS Test를 통해 데이터에 추세와 계절성이 있음을 확인한다. SARIMA(p,d,q)(P,D,Q,S)의 p, d, q, P, D, Q의 값은 모형 차수결정 정리로 파라미터를 추출한다. ACF와 PACF를 통해 p, q 파라미터를 추론한다. 차분, 로그변환, 계절성제거 등을 통해 데이터를 정상성 형태로 변환하고, 도식화 하여 파라미터를 도출하고, 계절성이 있다면 S를 정하고, SARIMA P,D,Q를 정하고, 계절성을 제외한 차수에 대해 ACF와 PACF를 보고 ARIMA p,d,q를 정한다.

시계열 모델을 활용한 위치 데이터의 시간적 패턴 분석 (Analysis on Temporal Pattern of Location Data with Time Series Model)

  • 송하윤;정준우;이다솜
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.768-771
    • /
    • 2021
  • 시계열 분석은 이전 시점들의 데이터를 기반으로 미래 시점의 데이터를 예측하는 기술을 제공하며, SARIMA는 이러한 시계열 분석에서 활용되는 통계 모델의 일종이다. 본 연구는 직접 수집한 실시간 위치 데이터에 SARIMA를 적용하여 개인의 이동 패턴을 추출하고 이를 예측에 활용하는 전반적인 프로세스를 제작하였다. 첫째, DB에 업로드된 위치 데이터를 비지도 학습의 일종인 EM-clustering을 활용해 핵심 방문 장소들로부터의 거리에 따라 군집화했다. 둘째, 해당 장소에 입장하고 퇴장하는 시간 간격에 SARIMA를 적용해 주기성을 추출했다. 마지막으로, 이 주기성들을 군집의 중요도에 따라 순차적으로 분석하여 유의미한 예측 결과를 도출해냈다.

양파 도매 가격 예측을 위한 12가지 모델 성능 및 지역별 결과 비교 분석 (A Comparative Analysis of Performance and Regional Results of 12 Models for Wholesale Onion Price Forecast)

  • 박제인;정수진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 추계학술발표대회
    • /
    • pp.908-909
    • /
    • 2024
  • 한국의 주요 농산물인 양파 도매가격을 예측하기 위해 12가지 모델(SARIMA, ARIMA, Lasso Regression, Linear Regression, Ridge Regression, ElasticNet, LSTM, LightGBM, XGBoost, Random Forest, Gradient Boosting, Prophet)의 예측 성능을 비교 분석하며, 다섯 개 지역(광주, 대구, 대전, 부산, 서울)에서 모델의 성능을 평가한다. ARIMA와 SARIMA는 특히 대구와 부산에서 우수한 성과를 보였으며, Prophet과 LightGBM 모델은 상대적으로 낮은 정확도를 나타냄을 발견하였다. 다양한 모델의 성능 차이를 분석하고, 지역별 데이터 특성에 따른 맞춤형 예측 접근의 필요성을 강조한다.

Analysis of Time-Series data According to Water Reduce Ratio and Temperature and Humidity Changes Affecting the Decrease in Compressive Strength of Concrete Using the SARIMA Model

  • Kim, Joon-Yong
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.123-130
    • /
    • 2022
  • 본 논문은 건설현장의 콘크리트 붕괴사고를 사전에 예방하기 위한 조치 중 하나로 감수율에 따른 콘크리트강도 저하에 영향을 미치는 일일 시간대별 변화와 온도의 변화를 시계열데이터로 축적된 기상청 자료를 기반으로 분석했다. 감수율 발생 구간의 예측을 확인할 신뢰성 있는 모델로 규칙적이고 명확한 시계열데이터 모델에 적합한 SARIMA모델을 통하여 p_value는 0.5 이하, coef는 일방향으로 나타나는 등 검증 항목들이 신뢰성 확보에 유의미한 결과를 얻었다. 이러한 신뢰를 바탕으로 확보한 데이터를 이용하여 시간대별 온도변화와 구간별 감수율을 분석한 결과 7~8월, 12~13시, 29~31℃ 구간이 가장 큰 감수율을 나타냄을 알 수 있다. 연구 결과를 이용하여 연구 결과 구간의 요인이 발생하면 배치플랜트에서 물-시멘트 배합설계 시 감수율을 반영한 레미콘을 생산하여 감수율에 따른 콘크리트 압축강도 저하를 예방할 수 있을 것으로 기대된다.

SARIMA와 ARDL모형을 활용한 COVID-19 구간별 원/달러 환율 예측 (Prediction of KRW/USD exchange rate during the Covid-19 pandemic using SARIMA and ARDL models)

  • 오인정;김우주
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.191-209
    • /
    • 2022
  • 2020년 코로나19 발발 이후 한국 경제를 포함한 국제 시장 환경은 급속하게 변하고 있고 한국 금융시장의 중요 경제 지표인 원/달러 환율도 요동치고 있다. 대외 의존도가 높은 한국 경제에서 환율에 대한 이해는 항상 중요한 연구 과제였고, 특히 코로나 확산이 환율에 미치는 연구는 시기적으로 많은 경제 학자들의 관심사이기도 하다. 따라서 본 연구는 코로나19 발발 이후 환율과 경제 지표의 관계를 분석하고 환율 예측을 위한 단변량 다변량 예측 모형을 구축하여 모형의 예측 성능을 비교 검증을 하였다. 코로나 전후 기간을 세 기간으로 나눠서 기간 1은 코로나 발발전과 초기, 기간 2는 코로나 대확산, 기간 3을 코로나 안정기로 나누고 기간 1의 환율 데이터를 학습한 SARIMA 모형과 같은 기간의 경제 변수와 환율 데이터를 학습한 ARDL 모형의 예측 성능을 비교하였다. 기간별 RMSE기준으로 SARIMA 모형은 기간 2에서 예측 성능이 뛰어나고 ARDL 모형은 기간 3에서 예측 성능이 가장 우수한 것으로 나타났다. 연구 결론은 환율과 경제 변수의 통상적인 관계가 나타나는 기간 3에서는 변수 관계를 반영하는 ARDL 모형이 좀 더 예측 성능이 좋은 모델이고 기존의 전형적인 환율과 경제 변수의 패턴에서 벗어난 과도기 시기인 기간 2에는 과거 환율 추이만 반영하는 SARIMA 모형이 좀 더 우수한 예측 성능을 보여주는 모델로 검증되었다.

SARIMA모형을 이용한 대기 중 오존농도 예측 모델 구축 (Implementation of Ozone Concentration Prediction Model Using SARIMA Model in Atmospheric)

  • 강정구;박석천;김종현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.641-644
    • /
    • 2015
  • 우리나라는 지난 40년간 급속한 경제 성장의 과정에서 에너지 소비가 급증하고 있으며, 이로 인해 온실가스 배출량은 1990년~2005년 사이 두 배 이상 증가하였고, 이는 OECD 국가 중 가장 높은 증가율이다. 2차 오염물질인 오존은 1990년부터 2012년까지 연평균 3% 상승하고 있으며, 반복 노출 시 폐에 피해를 줄 수 있는 오염 물질로 예방 대책이 필요하다. 이를 위해 본 논문에서는 계절성 특성을 지닌 오존농도 시계열 데이터를 바탕으로 SARIMA 모형을 활용하여 예측 모형을 구축 하였다.